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Abstract 

A formulation is proposed for the boundary element analysis of poro-elastic 
media with axi-symmetric geometry. The boundary integral equation is reduced 
to a set of line integral equations in the generating plane for each of the Fourier 
coefficients, through complex Fourier series expansion of boundary quantities in 
circumferential direction. The method is implemented into a computer program, 
where the fundamental solutions are integrated by Gaussian Quadrature along 
the generator, while Fast Fourier Transform algorithm is employed for 
integrations in circumferential direction. The strongly singular integrands in 
boundary element equations are regularized by a special technique. The Fourier 
transform solution is then inverted in to Rθz space via inverse FFT. The success 
of the method is assessed by problems with analytical solutions. A good fit is 
observed in each case, which indicates effectiveness and reliability of the present 
method. 
Keywords: poro-elasticity, boundary element method, axi-symmetric, fast 
Fourier transform, wave propagation. 

1 Introduction 

Axi-symmetric boundary element formulations for elasto-dynamics [1, 2] and 
acoustics [3, 4] are available in the literature. However, these formulations are 
either fully axi-symmetric (both geometry and boundary conditions are axi-
symmetric) or they expand the boundary quantities into symmetric and anti-
symmetric modes, the final response is obtained by combining solutions for each 
of these modes. Accurate evaluation of either elliptic integrals or integrations in 
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circumferential direction is required in the first and second approaches 
respectively, leading to extended run times. 
     Following the second approach described above, an axi-symmetric 
formulation for poro-elasticity is given by Dargush and Chopra [5]. Their 
formulation is fully axi-symmetric. 
     An alternative method based on complex Fourier series expansion of 
boundary quantities is developed by Özkan and Mengi [6]. In this method, the 
integrations in circumferential direction are accomplished by the Fast Fourier 
Transform (FFT) algorithm, which brings in considerable savings in 
computations. 
     The formulation of Tsepoura and Polyzos [7] for gradient elasticity is similar 
to [6]; however, they used the so called non-periodic FFT for integrations in θ-
direction when the source point lies in the integration element.  
     In this study, we extend the method in [6] to axi-symmetric poro-
elastodynamics with general boundary conditions.  
     The formulation has two major advantages: First, the use of FFT algorithm 
for integrations over θ-direction increases computational performance 
considerably compared to Gaussian Quadrature for the same purpose. Second, 
using complex Fourier expansion obviates the analysis for symmetric and anti-
symmetric modes separately therefore, analysis for a general boundary condition 
is accomplished in a single run. 
     The formulation is developed in frequency domain, yet solutions in time 
domain can be obtained by inverse FFT, after solution vectors have been 
obtained for a sufficient number of frequencies. 

2 Biot theory of poro-elasticity 

Biot’s poro-elasticity theory [8] is a generalization of elastodynamics to 
materials with fluid filled pore spaces and it includes Terzaghi’s 1-D 
consolidation theory as a special case. This theory led to reformulation of 
problems in soil mechanics, geophysics, acoustics and biomechanics [9] 
predicting behaviour beyond that conceivable by classical elasticity theory. The 
predictions of the theory have been substantially verified experimentally [10, 
11]. The material constants involved are easily discernible, physically 
meaningful and experimentally measurable. The theory also brings in a stronger 
definition of effective stress, which is a fundamental concept in soil mechanics. 

2.1 Governing equations in frequency domain 

Governing equations of poro-elasticity [11] in frequency domain are given as 
 

 
  ifiijijjji ufpuu )()( 2

,,,  
 

(1) 

 

a
i

p
Q

up kkkk
f 




 11
)(

1
,,2


 

(2) 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

166  Boundary Elements and Other Mesh Reduction Methods XXXIII



where, iu , p   are Fourier transforms of displacement components and pore-

pressure, if , a are body force and fluid generation per unit volume in 

frequency domain respectively. The Fourier and inverse Fourier transform of a 
time dependant function  tF is defined by the following pair 
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     Other parameters in (1) and (2) are  
  the circular frequency.  
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where, porosity and permeability are designated respectively by n and . Finally, 

a is the added mass density. 

2.2 The boundary integral equation (BIE) 

The weighted residual statement of (1) and (2) is obtained by taking the inner 

product of the system with a vector of weighting functions  Ti pu **
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, and  B  represent the partial differential operator pertaining 

to equations (1) and (2). Using Gauss Integral Theorem, in the absence of body 
forces and fluid source (4) can be converted to the following BIE 
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(5) 

where, an underline designates a matrix; G and H  matrices (4x4) contain first 

and second fundamental solutions of poro-elastodynamics, respectively. These 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXIII  167



solutions are two point (source at A, response at P) functions and associated with 
an infinite medium with either a point force in only one coordinate direction in 
turn or a unit fluid injection rate at a point “A”. The point “P” is called the 
integration point. t and u are (4x1) column matrices representing generalized 
traction and displacement vectors at the boundary points, c is a (4x4) matrix, 
which is ijijc 5.0 on a smooth boundary. 

3 Boundary element formulation for axi-symmetric bodies 

Consider a poro-elastic axi-symmetric body of boundary S, referred to a 
cylindrical coordinate system R--z as shown in fig. 1, where z is the axis of 
revolution. It will be assumed that the boundary conditions are not axi-
symmetric. The method is based on complex Fourier series expansion of the 
boundary quantities (displacements, pore-pressure, tractions and normal 
component of fluid flux vector) in circumferencal direction. 
     There are two main advantages of this method [6] over others available in the 
literature [1–5]: 

i) the evaluation of integrals in  direction is accomplished by FFT 
algorithm, which reduces the computational load, 

ii) the need for differentiating symmetric and anti-symmetric modes in 
the analysis is eliminated, which facilitates computer programming. 

     The transformation from cylindrical to cartesian coordinates is given by: 
 ctQt       and   cuQu    (6) 

where, where, cu  and ct  are the generalized displacement and traction vectors 

cylindrical coordinate frame. The transformation (rotation) matrix Q  is 
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     Substituting (6) in (5) and multiplying from left by QT(A), one gets 
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Since, dsRdd  . (8) is now the BIE in cylindrical coordinates where 

 P,AG
c

 and  P,AH
c  represent the fundamental solution matrices  
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and ccc  is the free term coefficient. 
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     It can be shown that the fundamental solutions  P,AG c  and  P,AH c
 are 

functions of the form 
  zz,,rG c  ,  zz,,rH c   (10) 

where, primed variables represent source point coordinates. 
 

 

 

Figure 1: An axi-symmetric body referred to Rθz coordinate system: a) three 
dimensional body, b) x-section on R-z plane. 

C

R

R

R

z

Q

B

z΄

z 

 (b)

x2 

x1 

x3, z

θ R

θ´ R

A

P

r


r

n


z´

z

(a) 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

Boundary Elements and Other Mesh Reduction Methods XXXIII  169



3.1 Expansion of field variables in complex Fourier series 

It follows from axi-symmetric geometry that the boundary quantities are “2π” 
periodic in angular direction, thus can be expand into complex Fourier series: 
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when (11) is substituted, (5) is reduced, for a k-th term of the Fourier series,  
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where the integrals are along the generating curve, thus, the dimensionality is 
reduced by one, at the expense of now k boundary equations. The equations are 
exact with infinite terms, but a good approximation is generally obtained by 
truncating the series to only a few terms. After Fourier coefficients are computed 
from (12) for each k, boundary quantities in Rθz space can be evaluated by 
inverse FFT.  When spatial discretization with constant elements along the 
generating curve is introduced (12) becomes  
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  

  





































j i

j i

C
0

QQ

cij

C
0

QQ

cij

 ds R-;zR, ; z,RHH

 ds R-;zR, ; z,RGG





 

In system form, (13) may be written as 
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     Fast and accurate evaluation of the integrals in (14) can be accomplished by 
FFT. This is the third stage we use FFT algorithm for computations. It should be 
noted that different number of Fourier terms may be selected for Complex 
Fourier expansion in (11) and in the integral evaluations in (14). 
     The computational procedure can be summarised as follows: 

 Choose N′=2Mp, the number of terms in Complex Fourier Series, and 
compute Fourier coefficients of boundary excitations by FFT (4th FFT). 

 Choose  N=2M, the number of division along θ for integrals in (14) 
 Discretize the generator and let the number of boundary elements be m. 

 Compute 
s

ijG
~

 and 
s
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(s=0…N-1), and form the system matrices 
k
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for 1-N ... 0 k . A frequency shift is necessary when 

assembling 
s
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k
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, as “s” and “k” run through 

different ranges. The singular integrals when source point is on the 
integration element is circumvented by introducing a panel element 
around the generator, details can be found in [11]. 

 Solution of the complex algebraic system of equations (15) together with 

the specified boundary conditions yields the Fourier coefficients 
ku~  and 

k
t~  at frequency points 1-N ..., 2, 1, ,0 k . 

 By an inverse FFT (5th) evaluate the boundary quantities in (R, θ, z) 
space. 

 The BIE (5) with c = I is used to compute solution at an internal point if 
required.  

 
 

Figure 2: One dimensional wave propagation in a layer. 
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4 Assessment of the formulation 

A computer program called AxiPoro is implemented using above algorithm with 
standard C language. And the results are assessed against three problems which 
have exact analytical solutions.  

4.1 One dimensional wave propagation in a PE layer 

This problem, in the context of poro-elasticity is first mentioned in [12], an 
analytical solution is also provided in the same reference. 
     In solving this problem by BEM, we model the PE “layer” by a PE “column” 
of unit diameter as shown in fig. 3. Although, the PE column is not an exact 
model for the layer, still is a close approximation. The material properties are 
given in Table 1 below. 
 

 

Figure 3: Equivalent column model of PE layer for BE analysis. 

Table 1:  Material data for Berea sand stone. 

N α Q (Pa) μ(Pa) ν 
κ 

(m4/N/s) 

ρ 

(kg/m3) 

ρf 

(kg/m3) 

ρa 

(kg/m3) 

0.19 0.778 1.353*1010 6*109 0.2 1.9*10-10 2458 1000 125.4 

 
     The poro-elastic column problem is solved by program AxiPoro. The column 
is modelled by 40 axi-symmetric boundary elements. N=128 (27) and N=32 (25) 
sub-divisions for circumferential integrations were used for convergence 
checking. A slight hysteretic damping of 0.3% is also introduced. The results for 
top displacement are plotted in fig. 4 together with the analytical solution in [12]. 
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   (a) Top displacement amplitude.   (b) Real part of top displacement. 
 

 
(c) Imaginary part of top displacement, E=. 

Figure 4: PE column (traction B.C. at top): BEM vs. analytical solution.  

4.2 Sudden pressurization of a circular cavity  

This problem was investigated by Senjuntichai and Rajapakse [13].  
     However, the governing equations used in [13] did not include the “continuity 
equation”, therefore, to comply with our BEM formulation, we re-work the 
solution for sudden pressurization (Dirac loading in time) with permeable wall 
condition; the analytical solution can be found in [11]. 
 

  

Figure 5: Circular cavity (infinite cylinder) in a poro-elastic full space 
suddenly pressurized. 
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     The poro-elastic circular cavity problem is solved by program AxiPoro, with 
the material data of Berea sandstone (Table 1). A finite cylindrical cavity of 10 
metres height is modelled by 25 axi-symmetric boundary elements. The angular 
divisions for circumferential integrations are N = 27 = 128. A hysteretic damping 
of 5% is used to eliminate edge reflections as much as possible. The results for 
radial surface displacements (compliance) at mid-height of the cavity are plotted 
in fig. 6 together with the analytical solution. Slight noise is observed in the 
figures due to waves generated at the ends of the cavity. 
 

 

a) Absolute value of ND compliance.              b) Real part of ND compliance. 
 

 
c)  Imaginary part of ND compliance. 

Figure 6: Circular cavity: BEM vs. analytic solution, E=. 

5 Conclusions 

In this study, an axi-symmetric BE formulation is presented for dynamic poro-
elasticity. The method makes frequent uses of FFT as an effective computational 
tool. The proposed formulation has several advantages over others in the 
literature; to summarize  

 expansion of boundary variables in complex Fourier series, obviates the 
need for differentiating symmetric and anti-symmetric modes in the 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Exact
BEM (M=7)

ND Frequency, (w.a/Vu)

N
D

 C
om

pl
ia

nc
e,

 |u
.E

/a
.S

o|

0 0.5 1 1.5 2
1.5

1

0.5

0

Exact
BEM (M=7)

ND Frequency, (w.a/Vu)

N
D

 C
om

pl
ia

nc
e,

 I
m

(u
.E

/a
.S

o)

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

174  Boundary Elements and Other Mesh Reduction Methods XXXIII



analysis leading to easier coding in the case of arbitrary boundary 
conditions. 

 use of FFT algorithm increases the computational performance and 
accuracy remarkably. 

 convergence of the method for a given BE mesh is controlled by the 
number of subdivisions in circumferential direction, good accuracy is 
obtained for N = 28. 

     If response in time domain is required, the analysis can be repeated for 
sufficient number of frequencies ω, and time history of boundary quantities can 
be evaluated by inverse FFT, again. 
     The computer implementation of the method is assessed against analytical 
solutions in the literature, a good fit is observed. 
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