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Abstract 

This paper presents a novel analysis technique using the multi-domain boundary 
element method (MDBEM) to solve large-scale engineering problems. Firstly, 
boundary integral equations for solving general heat conduction and mechanics 
problems are presented, which are established for a single medium and are 
formulated in terms of physical quantities at internal, boundary and interface 
points. Then a sparse system of equations formulated in terms of only interface 
nodal quantities is assembled based on the three-step variable condensing 
technique. Finally, a robust linear equation solution method is presented for 
solving the sparse system based on a row elimination-back-substitution method 
(REBSM). Combining REBSM and MDBEM makes the boundary element 
method more efficient for solving large practical engineering problems. A 
numerical example is given to demonstrate the efficiency of the proposed 
method. 
Keywords: multi-domain boundary element method, Gaussian elimination 
method, row elimination-back-substitution method, sparse system of equations. 

1 Introduction 

The boundary element method (BEM) is another extensively used numerical tool 
in solving engineering problems after the development of the finite element 
method (FEM). Apart from usual advantages mentioned in references (e.g., [1]), 
a few important advantages of BEM over FEM can be figured out as: 1) only 
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boundary of the problem needs to be discretized into elements and therefore less 
labor is required for preparing input data and is easy for modeling complicated 
problems; 2) it is efficient in solving thin-walled problems after the nearly 
singular integrals are accurately evaluated [2, 3]; and 3) the gradient of the basic 
physical quantity has the same accuracy as the physical quantity itself, since its 
computational formulation can be analytically derived from the basic integral 
equations. However, BEM has an inherent disadvantage that the formed 
coefficient matrices are fully-populated and non-symmetric, which limit the scale 
and speed of solving engineering problems. 
     In order to solve large-scale problems, researchers developed the multi-
domain boundary element method (MDBEM) [1, 4, 5]. In MDBEM, the 
computational domain of interesting is divided into a number of sub-domains; 
the BEM algebraic equations are established for each sub-domain; and the global 
system of equations is formed by assembling results of all sub-domains in terms 
of the equilibrium and consistence conditions over common interface nodes. The 
coefficient matrix of the global system of equations based on MDBEM is sparse, 
and therefore the well-developed solvers for sparse systems can be employed to 
solve it. The use of MDBEM not only can improve the efficiency both in 
problem scale and computational speed, but also can solve fracture problems by 
dividing sub-domains along crack surfaces [6] and multi-media problems by 
dividing sub-domains along interfaces [7]. 
     In MDBEM, the assembling skill of the system of equations directly affects 
the computational efficiency. So far, a number of assembling techniques have 
been proposed [1, 4, 5]. The simple one is to put all unknowns at outer boundary 
nodes, and displacements and tractions at interface nodes as the unknowns of the 
system [1]. Such assembling technique is easy for coding, but it makes the size 
of the system of equations huge, limiting the capability of solving large 
problems. The efficient assembling technique is the variable condensing methods 
[4, 5], in which some variables are eliminated first and only a part of variables 
are served as the final system unknowns. Among the variable condensing 
methods, the three-step variable condensing technique [5] is very efficient, in 
which unknowns at internal and outer boundary nodes as well as tractions (or 
fluxes) at interfaces are eliminated in turn and only displacements (or potentials) 
at interface nodes are assembled as unknowns of the system. This technique can 
result in a smallest system of equations and the formed coefficient matrix has a 
higher sparsity, suitable for solving large-scale problems.  
     Although the system coefficient matrix of MDBEM is sparse, it is not 
symmetric. Therefore, the existing powerful equation solvers developed for FEM 
can not be borrowed to solve the MDBEM systems. New powerful solvers for 
sparse non-symmetric systems need to be developed. Usually, there are two 
types of numerical solution methods for linear systems of equations: direct and 
iterative methods. In direct methods, such as Gaussian elimination, Gauss-Jordan 
elimination, and LU-factorization methods, the answer can be obtained in a 
predictable number of operations [8]. In iterative methods, such as the Jacobi 
method, Conjugate gradients, and GMRES, many steps are necessary in 
attempting to converge to the desired answer [9]. To keep computational 
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efficiency, the existing direct methods need to store whole coefficient matrix in 
core and therefore they are not suitable for solving large problems. As iterative 
methods are operated based on matrix-vector products, large systems can be 
solved. However, in iterative methods, since the approximation solutions are 
modified at each iterative step to approach the true answer, a convergent solution 
is not guaranteed for all systems of equations. 
     To overcome the deficiency of the existing direct methods in the requirement 
of large storage, a novel direct method is presented in the paper based on a row 
elimination-back-substitution method (REBSM). In this method, both 
elimination and back-substitution procedures are completed in the same row 
under consideration, and therefore, no later back-substitution procedure is 
required. Compared to the existing direct methods, such as the Gaussian 
elimination, the presented REBSM requires less data storage, so it can be used to 
solve larger system of equations. Also, since REBSM can be applied to systems 
of non-symmetric matrices, it is adopted in this paper to solve the MDBEM 
system of equations. 

2 Basic boundary integral equations in heat conduction and     
solid mechanics 

In this paper, the heat conduction and solid mechanics problems are served as the 
research backgrounds. However, the results can be extended to other problems. 

2.1 General boundary-domain integral equations for heat conduction 

The control equation for general heat conduction problems can be expressed as 
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where u is the temperature, ijk  and Q are heat conductivities and source, 

respectively. ijk  may be the function of coordinates ix  and temperature u in 

non-homogeneous and non-linear problems. The general boundary-domain 
integral equation for eqn (1) can be derived from the source isolation method 
[10] as 

  


 dQGudVdqGudquk  (2) 

where  represents the boundary of the computational domain , G is the 
Green’s function, and q is the heat flux. 
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     From eqn (4b) it can be seen that the coefficient k in eqn (2) is the average 

value of the diagonal terms of ijk . For isotropic problems with constant material 

parameters, k is reduced to the usual conductivity, while V＝0. 

2.2 General boundary-domain integral equations for mechanics 

The equilibrium equation for solid mechanics can be expressed as  

 0,  ijij b   (5)  

where ib  is the body force. The relationship between the stress ij , strain ij  

and displacement iu  is [11] 

 lkijklklijklij uDD ,    (6) 

in which ijklD  is the stress-strain constitutive tensor which is symmetric about 

subscripts, i.e., klijjilkijkl DDD  . For non-homogeneous materials or 

nonlinear problems, ijklD  may be the functions of coordinates or stresses. From 

the source isolation method [10], the boundary-domain integral equations for eqn 
(6) can be derived as: 
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where ijU  is the Kelvin displacement fundamental solutions, it  is the traction: 
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in which sn  is the outward normal, )-(1)2(    with  being the 

Poison’s ratio. From eqn (10) it can be seen that the coefficient ij  in eqn (7) is 

symmetric, that is jiij   . For isotropic elasticity problems with constant 

material parameters, ij ij  with  being the shear modulus, and ijV ＝0. 

     It is noted that, in coding, all domain integrals appearing in eqns (2) and (7) 
are transformed into boundary integrals using the radial integration method 
(RIM) [12], resulting in a cell-less BEM analysis scheme. 

3 MDBEM based on three-step variable condensation method 

The boundary-domain integral equations presented above are derived for single 
domain problems. However, practical engineering problems usually are 
composite structures consisting of different materials. To solve such problems, 
the multi-domain boundary element method (MDBEM) usually is employed 
[1, 4]. For this purpose, the three-step variable condensing MDBEM [5] is 
adopted in this study. Thus, the domain of problem is divided into a number of 
sub-domains. For each sub-domain, nodes are classified into three types: self-
nodes (not shared with other sub-domains), common interface nodes, and 
internal nodes. Integral equations (2) and (7) are applied to the three types of 
nodes, and following algebraic matrix equations can be established for each sub-
domain. 

 cbcbibicbcsbs tGyuHuHxA    (11) 

 ciciiiicicsis tGyuHuHxA   (12) 

in which subscripts s , c  and i  represent quantities corresponding to the self, 
common and internal nodes, respectively; b ＝s＋c denotes self plus common 

nodes related to current sub-domain; sx  is the unknown vector consisting of all 

unknown displacements and unknown tractions at the self nodes of the sub-

domain, and by and iy  are known vectors formed by multiplying specified 

displacements and tractions with corresponding elements of related coefficient 
matrices. 

First step: Eliminating internal displacements iu  from eqns (11) and (12), it 

follows                            

 cbcbcbcsbs tGyuHxA    (13) 

where 
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Second step: Noticing that b＝ s＋ c and eliminating unknowns sx  in eqn (13) 

yield    

 ccccccc tGyuH ˆˆˆ    (15) 

where  

 

ssscscc

scsscscccc

scsscscccc

yAAyy

GAAGG

HAAHH

1

1

1

)(ˆ

)(ˆ

)(ˆ













  (16) 

Third step: Eliminating common nodal tractions and forming the system of 
equations. 
     Equation (15) holds true for every sub-domain. For assembling the global 
system, it is written as the following form for the n-th sub-domain:  

 )ˆˆ()ˆ( )()()(1)()( n
c

n
c

n
cc

n
cc

n
c yuHGt     (17) 

     The common nodal displacement vector )(n
cu  for the n -th sub-domain can be 

expressed in terms of the globally numbered common displacement vector X by 

using a transfer matrix )(nQ  as 

 XQu nn
c

)()(    (18) 

The transfer matrix )(nQ  consists of 0 and 1, determined by the consistent 

condition of displacement at the common nodes. Considering contributions of all 
sub-domains at common nodes, the equilibrium condition of the traction states 
that 

 0)( 
n

n
ct   (19) 

Substituting eqn (18) into (17), and the result into (19), the following system of 
equations can be obtained 
 BXA    (20) 

where                            
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Solving eqn (20) for all interface nodal displacements and substituting them back 
to previous expressions, one can obtain all unknowns. It is noted that the matrix 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

158  Boundary Elements and Other Mesh Reduction Methods XXXIII



A in eqn (20) is a non-symmetric sparse matrix and, therefore, an equation solver 
for such systems needs to be developed. The row elimination-back-substitution 
method（ ）REBSM described in the following section is an effective one for 
solving such type of problems. 

4 Row elimination-back-substitution method (REBSM) for 
solving non-symmetric sparse linear systems of equations 

The system of equation (20) can be expressed as the following form:  

 i

n

j
jij bxa 

1

  (23) 

where n is the order of the equation set. 
     The key idea of REBSM is to find solutions of the system by completing both 
elimination and back-substitution procedures within each row. The main 
advantage of this treatment over the Gaussian elimination method is the less 
storage requirement of intermediate data. It is assumed that, after the treatment of 
the first k-1 rows, the following expressions have been obtained 

    



n

kj
j

k
ij

k
ii xabx 11      (i=1,2, … , k-1)   (24) 

For the k-th equation, we express it as follows  
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Substituting eqn (24) into the first term of the right-hand side of the above 
equation yields:      
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Separating the k-th unknown from eqn (26) gives 
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Then, substituting eqn (28) back to eqn (24), it follows that  
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where 
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     Equations (30) and (28) are the new expressions after the treatment of the k-th 
equation, in which the number of unknowns on the right-hand side is reduced by 
one compared to the expression of the row k-1 as shown in eqn (24). When the 
treatment of the last row of the equation (23) is finished, the unknowns of each 
right-hand side disappear and the remaining terms become the solutions of the 
system of equations.  
     From the derivation procedure of above formulations it can be seen that the 
features of REBSM can be classified as follows: 
(1) Elimination and back-substitution are performed in the same row of the 

system of equations, easy for use in engineering numerical methods such as 
in MDBEM.  

(2) Data storage requirement for intermediate process is different in different 
row treatments. For a system with full-populated matrix A, the maximum 
storage occurs in the middle part of A and the required storage size is a 
quarter of A, being the half of what Gaussian elimination method requires. 

(3) From eqn (31) it can be seen that only non-zero elements need to be stored 
for sparse systems, and no symmetrical and definite properties on A are 
required. Therefore, REBSM is suitable for use in MDBEM. 

(4) If the coefficient matrix A is not dominated by the diagonal elements, the 

value of kka  in eqn (29) may be zero or very small. In this case, pivoting is 

necessary to ensure an accurate result. This is easy to fulfill. What only need 

to do is that the maximum element among kja  ( n  , 2,k 1,kj  ) 

determined by eqn (27) is picked up and all related elements in this column 
are exchanged with those in the k-th column. 

5 Numerical example 

Based on the method presented in this paper, a code named BERIM has been 
written and a corrugated sandwich structure subjected to distributed load (Fig.1) 
has been analyzed. The upper and lower cover plates of the structure are made of 
nickel alloy with the Poison’s ratio =0.25 and Yong’s modulus E=50GMPa; the 
corrugated brackets are made of titanium with material properties of =0.25 and 
E= 250GMPa. The length, width and thickness of the plates are 4m, 2m and 
0.05m, respectively, and two plates are spaced by 1m; the thickness and span of 
brackets are 0.04m and 0.8m, respectively. In computation, the lower cover is 
fixed and upper cover is subjected to a distributed pressure load of 0.5MPa. The 
structure is divided into 22 sub-domains, as shown as Fig.1. The surfaces of the 
structure is discretized into 7808 eight-noded quadratic boundary elements 
(Fig.2) with 21236 boundary nodes, among which 1782 are common nodes with  
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Figure 1: Corrugated sandwich structure under distributed loading. 

 

Figure 2: BEM mesh of the corrugated sandwich structure. 
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Figure 3: Vertical displacement along mid-line of upper plate surface. 
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Figure 4: Horizontal displacement along mid-line of upper plate surface. 

the degrees of freedom being 5346. The maximum band width of the system of 
equations is 1743 which shows a higher sparsity. The computational time for 
solving such system is 107s on a PC computer with the CPU of 3.0GHz. For 
comparison, the problem is also computed using the finite element software 
ANSYS with the model consisting of 3360 solid 186 brick elements and 3360 
nodes. Figs.3 and 4 show the curves of computed vertical and horizontal 
displacements along x-direction over the middle line of the upper surface. It can 
be seen that the current results (BERIM) are in good agreement with those from 
ANSYS. 

6 Conclusions 

A multi-domain boundary element method has been presented for solving large-
scale engineering problems. The system of equations assembled using the three-
step variable condensing technique has the features of the smallest order and 
higher sparsity; the row elimination-back-substitution method (REBSM) is an 
efficient technique for solving non-symmetric and indefinite sparse system of 
equations, requiring less computer storage and suitable for using in MDBEM.  
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