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Abstract 

The paper deals with the space-time Galerkin-Bubnov scheme of the Indirect 
Boundary Element Method for the solution of time domain integral equations for 
thin wires in the presence of lossy media of the Pocklington and Hallen type, 
respectively. The presence of a dissipative half-space is taken into account via 
the corresponding space-time reflection coefficients. Some illustrative 
computational examples related to the overhead wires and grounding electrodes 
are presented. 
Keywords: boundary elements, time domain modeling, Hallen equation, 
Pocklington equation, thin wires. 

1 Introduction 

Generally, a direct time-domain analysis of thin wire configurations in the 
presence of lossy media can be carried out by using the appropriate space–time 
integral equations of either Pocklington or Hallen type [1–4]. One of the most 
efficient numerical solution approaches to both equation types is related to the 
Galerkin-Bubnov Indirect Boundary Element Method (GB-IBEM) [2]. When 
applied to the solution of the Hallen integral equation the method appears to be 
relatively complex comparing to various procedures for the solution of 
Pocklington equations, but, at the same time, it is proven to be highly efficient 
and accurate and unconditionally stable [2, 4]. On the other hand, the 
implementation of GB-IBEM to the solution of the Pocklington type equation is 
relatively simple, but suffers from numerical instabilities. The origin of these 
instabilities is the existence of space-time differential operator [2]. The GB-
IBEM solution of Pocklington equation in free space for certain values of time 
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domain integration parameters has been presented in [5], while the Hallen 
equation solution via GB-IBEM have been obtained for thin wire configurations 
in the presence of a dielectric half-space, e.g. in [6]. The original formulation has 
been developed for a single wire located horizontally above [2] and a below real 
ground, respectively [7]. In both cases, the influence of the finitely conducting 
ground has been taken into account via the corresponding reflection coefficient. 
Nevertheless, the numerical solution was mostly limited to the cases in which the 
finite conductivity of the ground could be ignored. This approximation involves 
cases where the wires are sufficiently far from the two-media interface, or where 
the ground conductivity is appreciably low or very high, i.e. where the 
approximation of pure dielectric medium or perfect ground is considered. 
Through these approximations the time dependent part of the reflection 
coefficient function vanishes, and the resulting matrix equation simplifies 
significantly.  
     However, for the cases where these approximations are not valid, 
modifications to the original methods are required in order to include the ground 
conductivity [8]. The related reflection coefficient is space- time dependent, and 
the resulting convolution integrals have to be included in the matrix system and 
numerically computed. This leads to a significant increase in the overall 
computational cost of the method, and requires several modifications.  
     This paper compares the space-time Pocklington and Hallen equation 
approaches when the lossy ground effects are taken into account. The related 
GB-IBEM procedures for the solution of both equations, taking into account a 
finite value of the ground conductivity, are discussed. Some illustrative 
computational examples related to transient analysis of overhead wires and 
grounding electrodes are given in the paper, as well. 

2 Hallen integral equation formulation 

The straight thin wire of length L and radius a located at height h above a lossy 
ground is shown in Fig. 1.  
     The formulation is based on the space-time dependent integral equation of the 
Hallen type which does not contain a differential operator. The Hallen is 
therefore particularly useful for a numerical treatment, as this operator is the 
origin of numerical instabilities [2].  
 

 

Figure 1: A straight thin wire above a real ground. 
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     The transient current I(x, t) induced on the horizontal straight thin wire, 
depicted in Fig. 1, illuminated by a plane wave electric field can be assessed by 
solving the space-time Hallen integral equation: 
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where R and R* are corresponding distances from the observation to the source 

point located on the real and image wire, respectively, exc
xE is the tangential 

component of the excitation and F0, FL are the unknown functions to account for 
the reflections at the wire free ends:  
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defined in terms of auxiliary functions K0, KL given by: 
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where subscript 0 and L is related to the distance from the observation point to 
the source point located on the real and image wire, respectively.  
     The ground effects are included in the formulation through the space-time 
dependent reflection coefficient for TM-polarization, [6] which, for convenience, 
can be written in the form:  
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Note that In is the modified Bessel function of the first order, n-th degree.  
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2.1 BEM procedure for Hallen equation 

Applying the weighted residual approach in the spatial domain and GB-IBEM 
procedure [2], the following local matrix system is obtained: 
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     The space-dependent local matrices representing the interaction between i-th 
source and j-th observation element are defined, as follows: 
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where {f} stands for the shape functions, while additional time dependent vectors 
are given by: 
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     Assembling the local matrices and vectors into the global ones yields the 
global matrix system which can be written in the form: 
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     Applying the weighted residual approach in the time domain, and using the 
Dirac impulses as weight functions provides the time sampling, and the 
following recurrent formula is obtained: 
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where 
k

j t
I  is current for the j-th space node at k-th time instant, N is total 

number of space segments, while the overbar indicates the absence of diagonal 
members. 
     It is worth noting that the numerical calculation of convolution integrals is 
rather tedious task leading to tremendously large computational time of the 
overall method. The main advantage of the method, on the other hand, is its 
unconditional stability. 

2.2 Numerical results for an overhead wire  

Computational example is related to a transient scattering from a straight thin 
wire of length is L=1m, radius a=2mm, located at height h=0.25m above ground 
with permittivity εr=10, while the conductivity is varied. The wire is illuminated 
by the tangential electromagnetic pulse (EMP) plane wave: 

 

 0( ) ( ), 0inc at bt
xE t E e e t     (15) 

 
with: E0=1 V/m, a=4·107 s-1, b= 6·108 s-1. 
     Fig. 2 shows the transient current induced at the wire center for different 
ground conductivities. 

 

 

Figure 2: Transient current at the wire center, L=1m, a =2mm, h=0.25, εr=10. 

     The influence of the ground conductivity to the transient response is 
particularly visible from around 0.1 S/m to 1 S/m.  
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3 Pocklington integral equation formulation 

The geometry of interest, shown in Fig. 3, is the horizontal grounding electrode 
of length L and radius a, buried in a lossy medium at depth d and excited at one 
end by an equivalent current source.  
 

 

Figure 3: Horizontal grounding wire energized by a current generator Ig. 

     Since the electric field excitation along the electrode does not exist i.e.:  
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xE    (16) 

assuming the certain set of approximation [7] the transient current induced along 
the electrode is governed by the following form of the Pocklington equation: 
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where the reflection coefficient is given by [7]: 
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where τ1 and τ2 are the time constants characterized by a lossy medium [7]: 
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Note that the current source is included into the integral equation scheme trough 
the boundary condition:  
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(0) gI I

  (20) 

which is inserted subsequently in the global matrix system [2]. 

3.1 BEM procedure for Pocklington equation 

It should be emphasized that, for the sake of simplicity, this paper considers only 
the case of an infinite lossy medium. Applying the weighted residual approach 
and performing space-discretization i.e. in matrix form one obtains the following 
time domain differential equation: 
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where {D} stands for the shape functions derivatives and: 


 


  and 
R

T
v

 . 

Finally, differential equation (21) is solved performing the marching-on-in-time 
procedure presented in [5]: 
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  (25) 

 
where Δt stands for the time increment and the stability of the procedure is 
achieved by choosing [5] γ=1/2 and β=1/4.  

3.2 Numerical results for grounding electrode 

Computational example is related to the grounding electrode of length L=10m, 
radius a=5mm, immersed in the lossy ground with εr=10, and σ=0.001S/m. The 
electrode is excited with the double exponential current pulse:  
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defined with I0=1.1043A, a=0.07924·107s-1, b=4.0011·107s-1. 
     The transient current induced at the centre of the electrode obtained via the 
presented direct time domain approach and the indirect frequency domain 
approach GB-IBEM with Fast Fourier Transform (FFT) is shown in Fig. 4. 

 

Figure 4: Transient current induced at the centre of the wire. 

     An acceptable agreement between the results computed via different 
approaches can be observed. 

4 Concluding remarks 

The paper deals with the transient analysis of thin wire structures in the presence 
of a lossy half-space, based on the time domain Hallen and Pocklington integral 
equation, respectively. The finite conductivity of the ground is taken into account 
via the corresponding reflection coefficients. The both types of integral equations 
are handled via the certain scheme of Galerkin-Bubnov Indirect Boundary 
Element Method (GB-IBEM) The strength and weaknesses of both approaches 
are emphasized and some illustrative examples related to overhead wires and 
grounding electrodes are presented within this work.  
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