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Abstract

A revised shape design sensitivity formulation is presented for elastostatic
problems based on the adjoint method and the boundary element method. The
objective function is assumed as a functional consisting of the boundary quantities
and those given at some finite number of points in the domain of the solid. The
gradient of the objective function is derived and an adjoint state is introduced so
that the unknown sensitivity coefficients of the displacement and traction on the
boundary and in the domain are eliminated from the gradient expression. Since
the original boundary value problem and the adjoint problem are governed by
the same differential equations and the boundary condition types, and also the
derived sensitivity formulation is expressed with only the boundary integrals and
the quantities at some discrete points in the domain, the boundary element method
can be used as the effective computational tool. Also, the recent development of the
fast-multipole boundary element method enables a large-scale shape optimization
analysis of complicated structures. The validity of the derived formulation is tested
through some numerical example problems.
Keywords: elastostatics, shape sensitivity, adjoint method, boundary element
method, topology optimization.

1 Introduction

Although the boundary element method (BEM) has an advantage of boundary
only modeling, it has not become a popular simulation tool in engineering
applications because it required high storage and computation costs. For shape
and topology optimization problems, the finite element method (FEM) has widely
been used as the computational method. However, following the development of
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fast computation algorithm [1,2] in recent decades, BEM may become a powerful
alternative to FEM in shape optimization problems.

Shape optimization as well as topology optimizations problems define objective
functions of the quantities defined on the boundary and in the domain. All such
quantities are also functions of shape parameters, and the optimum values of the
shape parameters minimizing the objective functions are calculated. The gradients,
or sensitivities, of the objective function with respect to the design variables
are also needed in most of the solution procedures to find the direction to the
minimum point of the objective function. The gradient is related to a variation
of the objective function, and consists of the sensitivities of the boundary and
internal quantities. To calculate these sensitivities, direct differentiation method
[3–5] and adjoint variable method [6, 7] has been proposed. When using BEM,
the direct differentiation method uses an additional boundary integral equation
obtained by differentiating the original boundary integral equation with respect to
an arbitrary shape design variable. The direct differentiation is, however, costly for
problems with a large number of design variables because the additional boundary
integral equation for the sensitivity must be solved for every design variable. The
adjoint variable method defines an additional system that eliminates the unknown
sensitivities on the boundary and in the domain. Therefore this method is more
efficient because we have to repeat the boundary element calculation only for the
original problem and the adjoint problem to calculate the gradient of the objective
function.

In this paper, we consider an objective function that is appropriate to evaluate by
means of BEM. The objective function is assumed to consist only of the quantities
on the boundary and at some discrete points in the domain. Adjoint variable
method is applied to the defined objective function and some numerical examples
are shown to demonstrate the effectiveness of the approach.

2 Formulations

2.1 Boundary element method for elastostatics

The governing differential equation for linear isotropic elastic solids is the
following Navier’s equation:

Cijkluk,li + bj = Guj,kk +
G

(1 − 2ν)
uk,kj + bj = 0 in Ω (1)

where Cijkl denotes the elastic tensor, ui and bi are the displacement and body
force vectors, respectively, G is the shear modulus, ν is Poisson’s ratio, and Ω
is the domain under consideration. The index is assumed to change from 1 to 3
for three-dimensional problems, and from 1 to 2 for two-dimensional case. For
terms with repeated indices, summation convention is assumed. The indices after
a comma denote differentiations with respect to the coordinate axes.
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The boundary conditions are as follows:

ui = ūi on Γu (2)

ti = t̄i on Γt (3)

where ti is traction, ūi and t̄i are the prescribed known functions of ui and ti on
some parts of the boundary Γu and Γt, respectively.

The boundary integral equation derived corresponding to Eq. (1) becomes [8]

cijui(y) +
∫
Γ

t∗ij(x, y)ui(x)dΓ(x) =
∫
Γ

u∗
ij(x, y)ti(x)dΓ(x)

+
∫
Ω

u∗
ij(x, y)bi(x)dΩ(x), y ∈ Γ (4)

where x and y are points on the boundary, cij is a constant tensor, becoming 1/2δij

when y lies at a smooth part of the boundary, u∗
ij is the fundamental solution, and

t∗ij is the traction related to u∗
ij . For two-dimensional, plane strain, case, u∗

ij and
t∗ij are given as

u∗
ij(x, y) =

1
8πG(1 − ν)

{
(3 − 4ν)δij ln

(
1
r

)
+ r,ir,j

}
(5)

t∗ij(x, y) =
−1

4π(1 − ν)r

[
∂r

∂n
{(1 − 2ν)δij + 2r,ir,j}

+ (1 − 2ν)(r,inj − r,jni)

]
(6)

where r is the distance between x and y, ni is the unit outward normal vector at x,
and ∂r/∂n is the derivative of r in ni direction at x.

In what follows, we assume that no body force exists in the domain for
simplicity. Discretizing Eq. (4), we have the following system of algebraic
equations:

[H ] {u} = [G] {t} (7)

and rearranging this so that all the unknowns come to the left-hand side and all the
others to the right-hand side result in

[A] {X} = {Y } (8)

where {X} is the vector consisting only of unknown nodal values, while {Y } is
the vector obtained by multiplying the known nodal values with corresponding
parts of the coefficient matrix.

Once Eq. (8) is solved we obtain all the displacement and tractions on the
boundary. The stress component on the boundary can be calculated using them
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by

σij =
1

1 − ν
(νδij − ninj) tknk + tinj + tjni

+ G
{ 2ν

1 − ν
(2δij − ninj)αk + (δik − nink)αj + (δjk − njnk)αi

}∂uk

∂α

+ G
{ 2ν

1 − ν
(2δij − ninj)βk + (δik − nink)βj + (δjk − njnk)βi

}∂uk

∂β
(9)

where αk and βk are tangential vectors on the boundary, and ∂uk/∂α and ∂uk/∂β
are corresponding tangential derivatives of uk.

The internal displacement can be calculated by using Eq. (4) with cij = δij . The
formula for calculating internal stresses is also obtained by differentiating Eq. (4)
with cij = δij at an internal point and substituting it into Hooke’s law [8].

2.2 Objective function of shape optimization problem and its sensitivity

We consider the following objective function

J =
∫
Γ

g(ui, ti)dΓ(x) +
∑

s

∫
Ω

h(ui, σij)δ(x − zs) dΩ, zs ∈ Ω(x) (10)

where Γ denotes the boundary, Ω the domain, ui and ti the displacement and
traction, respectively, σij the stress components, zs, (s = 1, 2, . . .) the discrete
points in the domain, and δ(x− zs) the Dirac delta function. g(ui, ti) is a function
defined with ui and ti on the boundary, while h(ui, σij) is that defined in the
domain.

Note that the second domain integral is not in fact an integral because Dirac’s
delta functions exist in the integrands, therefore, this type of objective function is
quite appropriate to treat with BEM.

The gradient of J with respect to an arbitrary shape design variable becomes

J ′ =
∫
Γ

(
∂g

∂ui

.
ui +

∂g

∂ti

.
ti

)
dΓ +

∫
Γ

g
.

dΓ

+
∑

s

∫
Ω

(
∂h

∂ui

.
ui +

∂h

∂σij

.
σij

)
δ(x − zs) dΩ

+
∑

s

∫
Ω

h(ui, σij)δ(x − zs) d
.
Ω +

∑
s

∫
Ω

h((ui, σij)
.
δ(x − zs) dΩ

(11)
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An overscribed dot (
.
) in the above expression denotes a material derivative [9],.

ui,
.
ti,

.
σij are understood in the following sense:

.
ui = u′

i + ui,j
.
xj (12)

.
ti = t′i + ti,j

.
xj (13)

.
σij = σ′

ij + σij,k
.
xk (14)

where a prime (′) denotes a differentiation with respect to the design variable

before the shape change is applied. Also,
.

dΓ and
.

dΩ are written as follows [9]:

.
dΓ =

( .
xm,m − .

xi,jninj

)
dΓ (15)

.
dΩ =

.
xm,m dΩ (16)

We find from Eq. (11) that in order to evaluate Eq. (10) we have to calculate
the sensitivities of the

.
ui,

.
ti,

.
σij as many as the number of the design variable.

Although these quantities can be calculated by using the direct differentiation
method based on the differentiation of the boundary integral equation with respect
to the design variable, it is not efficient when the number of the design variables is
large. Therefore, we apply the adjoint variable method to eliminate these unknown
sensitivities from Eq. (11). We now observe

.
(uk,l) =

.
(uk),l − uk,m

.
xm,l (17)

where
.

( ) denotes a material derivative of the quantity enclosed with parentheses.
Using Eq. (17) we have the material derivative of the stress components as follows:

.
σij = Cijkl

.
(uk,l)

= Cijkl

.
(uk),l − Cijkluk,m

.
xm,l (18)

Using Eq. (18), we can modify the integral of
.
σij in Eq. (11) as

∫
Ω

∂h

∂σij

.
σijδ(x − zs) dΩ =

∫
Ω

∂h

∂σij
Cijkl

.
(uk),lδ(x − zs) dΩ

−
∫
Ω

∂h

∂σij
Cijkluk,m

.
xm,lδ(x − zs) dΩ

= −
∫
Ω

[
∂h

∂σij
δ(x − zs)

]
,l

Cijkl
.
uk dΩ

−
∫
Ω

∂h

∂σij
Cijkluk,m

.
xm,lδ(x − zs) dΩ (19)
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Then, Eq. (11) becomes

J ′ =
∫
Γ

(
∂g

∂ui

.
ui +

∂g

∂ti

.
ti

)
dΓ +

∫
Γ

g
.

dΓ +
∑

s

∫
Ω

∂h

∂ui

.
uiδ(x − zs) dΩ

−
∑

s

∫
Ω

(
∂h

∂σij

)
,l

Cijkl
.
ukδ(x − zs) dΩ

−
∑

s

∫
Ω

∂h

∂σij
Cijkl

.
ukδ,l(x − zs) dΩ +

∑
s

∫
Ω

h
.
δ(x − zs) dΩ

−
∑

s

∫
Ω

∂h

∂σij
Cijkluk,m

.
xm,lδ(x − zs) dΩ +

∑
s

∫
Ω

hδ(x − zs)
.

dΩ (20)

We consider the following augmented objective function instead of Eq. (10):

P = J + I (21)

where I is the integral of the left-hand side of Navier’s equation times Lagrange
multipliers λj , (j = 1, 2, 3) over the domain, as follows:

I =
∫
Ω

λjCijkluk,li dΩ (22)

where Cijkl is the elastic constant tensor. Integrating I by parts gives the following
weak form:

I =
∫
Γ

λjtj dΓ −
∫
Ω

λj,iCijkluk,l dΩ (23)

From Eq. (23), we have

I ′ =
∫
Γ

.
λjtj dΓ +

∫
Γ

λj

.
tj dΓ +

∫
Γ

λjtj
.

dΓ

−
∫
Ω

.
(λj,i)Cijkluk,l dΩ −

∫
Ω

λj,iCijkl

.
(uk,l) dΩ −

∫
Ω

λj,iCijkluk,l

.
dΩ

(24)

Again, we observe some relationships for the material derivative of the Lagrange
multiplier as

.
λj = λj,m

.
xm (25)

.
(λj,i) = λj,im

.
xm (26)
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Using Eqs. (17), (25) and (26) into Eq. (24) and applying integration by parts give

I ′ =
∫
Γ

λj,m
.
xmtj dΓ +

∫
Γ

λj

.
tj dΓ +

∫
Γ

λjtj
.

dΓ

−
∫
Γ

λj,iCijkl
.
uknl dΓ +

∫
Γ

λj,iCijkluk,m
.
xmnl dΓ

+
∫
Ω

λj,ilCijkl
.
ukdΩ −

∫
Ω

λj,ilCijkluk,m
.
xm dΩ

−
∫
Γ

λj,iCijkluk,l
.
xmnm dΓ (27)

Thus, we obtain the gradient of the augmented objective function P , as follows:

P ′ =
∫
Γt

(
∂g

∂uk
− τk

)
.
uk dΓ +

∫
Γu

(
∂g

∂uk
− τk

)
.
uk dΓ

+
∫
Γt

(
∂g

∂ti
+ λi

) .
ti dΓ +

∫
Γu

(
∂g

∂ti
+ λi

) .
ti dΓ

+
∫
Ω

{
Cijklλj,il +

∑
s

[
∂h

∂uk
δ(x − zs) −

(
∂h

∂σij

)
,l

Cijklδ(x − zs)

− ∂h

∂σij
Cijklδ,l(x − zs)

]}
.
ukd Ω

+
∫
Γ

g
.

dΓ +
∫
Γ

λj,m
.
xmtj dΓ

+
∫
Γ

λjtj
.

dΓ +
∫
Γ

τkuk,m
.
xm dΓ

−
∫
Γ

λj,iCijkluk,l
.
xmnm dΓ −

∫
Ω

λj,ilCijkluk,m
.
xm dΩ

+
∑

s

∫
Ω

h
.
δ(x − zs) dΩ

−
∑

s

∫
Ω

∂h

∂σij
Cijkluk,m

.
xm,lδ(x − zs) dΩ

+
∑

s

∫
Ω

hδ(x − zs)
.

dΩ (28)

where τk is defined as the traction corresponding to λj as

τk = Cijklλj,inl (29)
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Notice that
.
ui and

.
ti are also known on Γu and Γt, respectively, whereas

.
ui on

Γt,
.
ui on Γu, and

.
ui in Ω are all unknown. Therefore, in order to eliminate these

unknown sensitivities from Eq. (28), we consider the following adjoint problem
for λi:

Cijklλj,il(x) +
∑

s

{
∂h

∂uk
δ(x − zs) −

(
∂h

∂σij

)
,l

Cijklδ(x − zs)

− ∂h

∂σij
Cijklδ,l(x − zs)

}
= 0, x ∈ Ω (30)

τk(x) =
∂g

∂uk
(x) x ∈ Γt (31)

λi(x) = − ∂g

∂ti
(x) x ∈ Γu (32)

Equation (30) is the same as Navier’s equation with body force terms at discrete
points. The boundary conditions given by Eqs. (31) and (32) have the same type of
the original boundary condition given by Eqs. (2) and (3). Therefore, we can solve
the adjoint problem very efficiently using the same coefficient matrices of BEM.

By using λi as the solution of Eqs. (30), (31), and (32), the gradient of P can be
calculated by using the following expression.

P ′ =
∫
Γu

(
∂g

∂ui
− τi

)
.
ui dΓ +

∫
Γt

(
∂g

∂ti
+ λi

) .
ti dΓ

+
∫
Γ

g
.

dΓ +
∫
Γ

λj,m
.
xmtj dΓ +

∫
Γ

λjtj
.

dΓ

+
∫
Γ

τkuk,m
.
xm dΓ −

∫
Γ

λi,jσij
.
xmnm dΓ

−
∑

s

{ ∂h

∂σij
σij,m

.
xm +

∂h

∂ui
ui,m

.
xm + h

.
xm,m

}
(33)

where ui,j can be calculated by using

ui,j =
∂ui

∂n
nj +

∂ui

∂α
αj +

∂ui

∂β
βj (34)

with

∂ui

∂n
=

1
G

(
ti − 1

2(1 − ν)
tknkni

)
−
(

ν

1 − ν
niαk + nkαi

)
∂uk

∂α

−
(

ν

1 − ν
niβk + nkβi

)
∂uk

∂β
(35)

The formula to calculate λi,j is obtained by simply replacing u in Eqs. (34) and
(35) with λ.
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3 Numerical examples

We consider a rectangular plate, subjected to a roller support on one end and a
uniform tensile stress t̄ = 200 [MPa] on the other end, as shown in Figure 1.
Young’s modulus and Poisson’s ratio are assumed as 216 GPa and 0.3, respectively.
The size of the plate is initially set as L1 = 0.1 [m] and L2 = 0.02 [m].

The functions g and h in Eq. (10) are given as follows:

g = 0 (36)

h =
1
2

(u1(P) − 0.00004)2 (37)

In this example, we observe that changing L1 yields a different value of u1, thus,
L1 is chosen to be a design variable to validate the derived formulas.

The boundaries of the rectangular plate is discretized into quadratic elements
uniformly. We show in Table 1 the sensitivities of the objective function and errors
obtained for different number of elements using the present approach.

Next we consider another rectangular plate model, as shown in Figure 2. Both
sides of the plate are fixed and a concentrated force F = 2.67× 106 [N] is applied
at the center of the lower boundary. We intend to change the von Mises stress at
internal point P to the target value σ̄ = 30 [MPa] by changing the x2 coordinate
of the nodes a, b, and c on a part of the boundary ΓD. The related functions of the

Table 1: Sensitivities and their errors obtained for various number of element
discretization of the rectangular plate model.

Number of nodes Sensitivity P ′ Error [%]

24 −4.9434× 10−9 3.37 × 10−1

48 −4.9397× 10−9 4.49 × 10−1

120 −4.9622× 10−9 5.02 × 10−3

240 −4.9619× 10−9 2.82 × 10−4

P

Figure 1: A rectangular plate subjected to uniform tensile stress.
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P0.
1m 0.
02
5m

0.2m

0.06m 0.06m0.08m

a b c

F

Figure 2: A rectangular plate subjected to a concentrated force.

Figure 3: Final shape of the rectangular plate subjected to a concentrated force.

objective function are given as

g = 0 (38)

h =
1
2

(σM(P ) − σ̄)2 (39)

where σM(P ) is the von Mises stress at the internal point P. The entire boundary is
discretized into 30 quadratic elements uniformly. The concentrated force is given
as an equivalent traction at the node placed at the point where the concentrated
force is acting. In Figure 3 is shown the final shape of the plate obtained by the
present procedure for calculating the shape sensitivities. The von Mises stress at
point P in the optimum shape is found to be 3.0034128× 107 Pa, which is turned
out to be very close to the target stress value.

4 Concluding remarks

A shape sensitivity expression for objective functions appropriate to evaluate
using BEM, has been derived based on the adjoint variable method. The objective
function consists of only boundary integrals of the displacement and traction, and
values defined with the internal displacement and stress at discrete points in the
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domain. The differential equation of the adjoint system has become a Navier’s
equation with body forces at the discrete points in the domain, and the boundary
conditions are of the same type as those of the original problem. Therefore, the
same coefficient matrices can be consistently used also for the adjoint problem.
The derived adjoint variable approach was applied to some numerical examples to
validate its effectiveness.
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