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Abstract

The paper considers the fundamental aspects of turbulence modelling for
incompressible Boussinesq fluid flow and corresponding numerical models based
on the boundary-domain integral equations. Two different solution methodologies
of turbulent flow circumstances are considered, e.g. the classical statistical
methodology known as Unsteady Reynolds-Averaged Navier–Stokes (URANS)
equations and deterministic Large-Eddy-Simulation (LES) formulation. The
velocity-vorticity formulation of the mean/filtered equations is applied, while
the averaged/filtered pressure field is determined by solving the Poisson velocity
equation. Chaotic natural convection in a differentially heated cavity of aspect ratio
4 with adiabatic horizontal walls is studied by both mentioned methodologies of
the unsteady two-dimensional governing equations.
Keywords: turbulence, large eddy simulation, unsteady RANS, boundary element
method.

1 Introduction

The set of partial differential equations governing the motion of viscous fluid is
known as nonlinear Navier–Stokes equations. This equation system is generally
considered to be the fundamental description for all laminar as well as turbulent
flows, although some statistical averaging or deterministic filtering procedure is
required in practice to predict the turbulence and simulate numerically the flow at
higher Reynolds or Rayleigh number values due to the enormous computational
effort needed. In the LES methodology the classical Smagorinsky model with
Van Driest damping closed to cavity walls is considered, while in the URANS
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methodology the low Reynolds two equation k − ε Launder and Sharma turbulent
model is applied.

The present investigation is concerned with URANS and LES of complex
buoyancy-driven Boussinesq fluid flow in two dimensions in a 1:4 square
differentially heated enclosure. For aspect ratio larger than or equal to 4, the onset
of unsteadiness is due to the instability of vertical boundary layers. Although
the turbulent flow in the rectangular cavity is basically three-dimensional, two-
dimensional model can be applied in this case due to minor differences between
the 3D and 2D flow field results.

2 Governing mean/filtered flow equations

2.1 Primitive variables formulation

The governing equations for the mean/filtered flow can be written in terms of
effective momentum diffusivity νef and thermal diffusivity aef , respectively, as
follows

∂vj

∂xj
= 0, (1)

ρo
Dvi

Dt
= −∂p�

∂xi
+

∂

∂xj

(
ρo2νef ε̇ij

)
+ ρgi, (2)

co
DT

Dt
=

∂

∂xj

(
coaef

∂T

∂xj

)
+ ST , (3)

where the effective transport coefficient for the mean/filtered flow equations are
given by the definitions, e.g. νef = ν +νt, aef = a+at, or similarly νef = ν +νs

and aef = a+as, respectively. The modified mean pressure term p� represents the
sum of the static pressure and complementary volumetric part of Reynolds stress,
such as

p� = p +
2
3
ρok, (4)

while in the modified filtered pressure term p� the complementary spherical tensor
part or the trace of subgrid-scale stress tensor has been lumped into the pressure
by defining

p� = p +
1
3
ρoτ

R
kk. (5)

The momentum equation Eqn. (2) can be written in a form suitable for velocity-
vorticity formulation, e.g. in a vector form

ρo
D�v

Dt
=−rot(ηef�ω) + 2 grad�v · gradηef + 2 gradηef × �ω

−gradp� + ρ�g , (6)
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The effective dynamic viscosity ηef and effective heat conductivity kef can be
given as a sum of a constant and variable part

ηef = ηefo + η̃ef , kef = kefo + k̃ef , (7)

therefore the momentum and energy Eqns. (6) and (3) can be written in analogy to
the basic conservation equations formulated for the constant material properties

ρo
D�v

Dt
= −ηefo rot �ω − gradp� + ρ�g + �fm , (8)

co
DT

Dt
= kefo�T + ST + Sm

T , (9)

where the pseudo body force term �fm and pseudo heat source term Sm
T , are

introduced into the momentum Eqn. (8) and energy Eqn. (9), respectively,
capturing the variable transport property effects, and given by expressions

fm
i = −eijk

∂ωk

∂xj
η̃ef + eijk

∂ηef

∂xj
ωk + 2

∂ηef

∂xj

∂vi

∂xj
, (10)

while the pseudo heat source term is given by expression

Sm
T =

∂

∂xj

(
k̃ef

∂T

∂xj

)
. (11)

Once the form of the eddy diffusivity coefficients are specified then the
mean/filtered governing transport equations can be solved in the same manner as
a laminar flow since the equations are the same except for augmented diffusivity
coefficients. Though the turbulent flow problem has been reduced to a familiar
system of partial differential transport equations, there remains the nontrivial task
of determining how the eddy diffusivity coefficients vary with the flow field.

2.2 Velocity-vorticity mean/filtered flow formulation

With the mean/filtered vorticity vector ωi representing the curl of the velocity
field vi

ωi = eijk
∂vk

∂xj
and

∂ωj

∂xj
= 0 , (12)

the fluid motion computation scheme is partitioned into its kinematics, given by
the elliptic mean/filtered velocity vector equation

∂2vi

∂xj∂xj
+ eijk

∂ωk

∂xj
= 0 , (13)

and kinetics given by mean/filtered vorticity transport equation, obtained as a curl
of the mean/filtered momentum Eqn. (8), e.g., written in Cartesian tensor notation
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formulation

∂ωi

∂t
+

∂vj ωi

∂xj
= νefo

∂2ωi

∂xj∂xj
+

∂ωj vi

∂xj

+
1
ρo

eijk
∂ρgk

∂xj
+

1
ρo

eijk
∂fm

k

∂xj
, (14)

which reduces for two-dimensional plane flow case, to the following scalar
mean/filtered vorticity statement

∂ω

∂t
+

∂vj ω

∂xj
= νefo

∂2ω

∂xj∂xj
− 1

ρo
eij

∂ρgi

∂xj
− 1

ρo
eij

∂fm
i

∂xj
. (15)

The vorticity transport Eqn. (14) is highly nonlinear partial differential equation.
Due to the buoyancy force and variable effective transport properties, acting as
additional nonlinear vorticity source terms, the vorticity transport equation is
coupled to the energy/mass and transport equations for the turbulence quantities,
making the numerical computation procedure very challenging.

3 Eddy-viscosity turbulence models

3.1 Two-equation LRN k − ε turbulence models

In the k − ε turbulence models, the turbulent motion is characterized by two
quantities, namely the turbulent kinetic energy k and the turbulent energy
dissipation rate ε, e.g. given by relations

k =
1
2
v′iv

′
i, ε = ν

∂v′i
∂xj

∂v′i
∂xj

, (16)

while the turbulent viscosity is given by the Kolmogorov–Prandtl relation

ηt = Cηρofη
k2

ε
, (17)

which relates the eddy viscosity directly to the turbulence variables, k and ε, and
where Cη = 0.09 is an empirical constant. The values of k and ε come directly
from the differential transport equations for the turbulent kinetic energy and the
eddy dissipation rate

ρo
Dk

Dt
=

∂

∂xj

[(
ηo +

ηt

σk

)
∂k

∂xj

]
+ Pk − ρoε̃ − ρoD, (18)
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Dε̃

Dt
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∂

∂xj
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ηt
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)
∂ε̃

∂xj

]
+ Cε1fε1

ε̃

k
Pk − Cε2fε2ρo

ε̃2

k
+ ρoE, (19)
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where the model variable ε̃ is defined as

ε ≡ ε̃ + D with D = 2.0νo

(
∂k1/2

∂xj

)2
. (20)

Since the dissipation rate at the wall is equal to

ε|wall ≡ D|wall = 2.0νo

(
∂k1/2

∂xj

)2 ∣∣∣∣
wall

, (21)

the variable ε̃ is zero at the wall which simplifies the specification of wall boundary
conditions, i.e.

k = ε̃ = 0 . (22)

Further, such definition of new variable ε̃ also gives rise to an extra term E in
the ε̃ transport equation

E = 2.0νoνt

(
∂2vi

∂xj∂xk

)2
. (23)

The turbulent kinetic energy production term Pk is due to viscous and buoyancy
forces and is modelled, e.g. by the following relation

Pk = 2ηtε̇ij
∂vi

∂xj
− ηtgi

∂ρ/∂xi

σρρ
. (24)

The damping functions are expressed as functions of the local turbulence
Reynolds number Ret as follows:

fη = exp
[
− 3.4

(1 + 0.02Ret)2

]
and Ret =

ρk2

ηε
, (25)

fε1 = 1 and fε2 = 1.00 − 0.3 exp
(−Re2t

)
, (26)

with Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, and σε = 1.3, while σρ = 0.9,
respectively.

3.2 Subgrid-scale closure/modeling

One of the most popular Boussinesq eddy-viscosity subgrid closure model is due
to Smagorinsky, e.g. which correlates τR

ij to the large-scale strain-rate tensor ε̇ij

τR
ij = −2ηsε̇ij +

1
3
ρoτ

R
kkδij . (27)

The subgrid viscosity ηs can be expressed as

νs ∝ ls vs, (28)
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where ls is the length scale of the unresolved flow and vs its velocity scale. The
subgrid viscosity can be expressed as

ls = � = (�Ω)1/3, (29)

where �Ω is the volume of the computational internal cell. The velocity scale is
related to the gradients of vi and it is defined as

vs = lsγ̇, (30)

where γ̇ is the deformation velocity of the resolved flow or the magnitude of the
large-scale strain-rate tensor ε̇ij defined as

γ̇ = (2ε̇ij ε̇ij)1/2 and ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (31)

Finally the subgrid-scale viscosity is defined as

νs = (Cs�)2γ̇, (32)

where Cs is the Smagorinsky constant. It is found that values of Cs vary from
0.065 to 0.2 for isotropic turbulence. Furthermore, Cs has to be reduced in the near
wall region to account for the turbulence anisotropy. Thus, the correct distribution
of Cs in the near wall region is obtained by using so-called damping functions,
e.g. the most often used is the van Driest damping function

Cs = Cso [1 − exp(−Reτ/25)]2 . (33)

The subgrid-scale heat flux vjT can be modelled as simple gradient diffusion
hypothesis

vjT = − νs

Prt

∂T

∂xj
. (34)

4 Boundary-domain integral equations

The kinematics of plane motion is given by two scalar equations as follows:

c (ξ) vi (ξ) +
∫
Γ

viqdΓ =
∫
Γ

∂vi

∂n
u�dΓ + eij

∫
Γ

ωnju
�dΓ − eij

∫
Ω

ωq�
j dΩ. (35)

where u� stands for the elliptic Laplace fundamental solution and q� is its normal
derivative, e.g. q� = ∂u�/∂n = �q� · �n, while the vector flux variable is
defined as q�

i = ∂u�/∂xi. The most important issues in numerical modelling
of incompressible fluid flow is to obtain a divergence free final solution for the
velocity and vorticity vector field functions. Thus, the proper kinematic integral
representation should preserve the compatibility and restriction conditions for the
velocity and vorticity field functions. Accounting for the additional compatibility
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and restriction conditions for velocity and vorticity fields, e.g. �ω = rot�v and
div�v = 0, the following boundary integral representation for the general flow
situation can be stated for the two-dimensional plane flow kinematic case as
follows

c (ξ) vi (ξ) +
∫
Γ

viq
�dΓ = eij

∫
Γ

vjq
�
t dΓ − eij

∫
Ω

ωq�
j dΩ . (36)

Using unique feature of global integral representation for boundary vorticity
values, the vector eq.(36) has to be written in its tangential form in order to obtain
an appropriate non-singular implicit system of equations for unknown boundary
vorticity values.

Considering the kinetics in an integral representation one has to take into
account the parabolic diffusion-convection character of the vorticity transport
equation. With the use of the linear parabolic diffusion operator the vorticity
equation can be formulated as a scalar inhomogeneous parabolic diffusion
equation as follows:

c (ξ) ω (ξ, tF ) +
∫
Γ

ωQ�dΓ =
1
ηo

∫
Γ

(
ηo

∂ω

∂n
− ρovnω + ρgt

)
U�dΓ

+
1
ηo

∫
Ω

(
ρovjω + eij(ρgi + fm

i )
)
Q�

jdΩ +
∫
Ω

ωF−1u�
F−1dΩ, (37)

where a constant variation of all field functions within the individual time
increment ∆t = tF − tF−1 is assumed, e.g. the values at t = tF are considered for
each time step, where vn and gt are the normal velocity, and the tangential gravity,
respectively, e.g. vn = �v · �n, gt = �g · �t = −eijginj .

The integral representation of the heat energy diffusion-convection transport
equation is derived considering the linear parabolic diffusion differential operator
and therefore the equation may be rewritten in the form

c (ξ)T (ξ, tF ) +
∫
Γ

TQ�dΓ =
1
ko

∫
Γ

(
ko

∂T

∂n
− covnT

)
U�dΓ

+
1
ko

∫
Ω

(covjT + Sm
T )Q�

jdΩ +
∫
Ω

TF−1u�
F−1dΩ, (38)

where a constant variation of all field functions within the individual time
increment ∆t = tF − tF−1 is assumed.

5 Numerical aspects/iterative strategy

The boundary element implementation of the two equation k − ε low-Reynolds-
number model is basically straightforward since the transport equations for the
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turbulent quantities are of the familiar diffusion-convection type. The details of the
iterative scheme can be formulated as follows. For the given velocity field �v the
k and ε equations have to be solved. The first point of the iterative scheme is that
the equations for k and ε are coupled iteratively. Therefore, the nonlinear transport
equation is solved for k first assuming that ε is known and then the computed value
of k is used to solve the nonlinear transport equation for ε. Since it is not desired to
deal with problems with a negative production term, the term Pk is kept constant in
Eqn. (19) and also production term is kept constant in Eqn. (18). In the innermost
iterative loop the linearized k equation is solved.

Next the linearized ε equation is solved. Now, the iterative scheme can be written
in detail, as follows:

1. Compute Pk and Pε

2. Repeat until convergence for νt

2.1 Solve for k:
2.1.1 Solve linearized k equation
2.1.2 ki = ur · ki + (1 − ur) · ki−1

2.2 Check convergence for k. If not, go to 2.1.
2.3 Update νt using Eqn. (17)
2.4 Solve for ε:

2.4.1 Solve linearized ε equation
2.4.2 εi = ur · εi + (1 − ur) · εi−1

2.4 Check convergence for ε. If not, go to 2.4.
2.5 Update νt using Eqn. (17)

3. Check convergence for νt. If not, go to 2.
The main advantages of the Smagorinsky model are its simplicity and its

stability. Whether filtering is introduced or not, the LES equations with subgrid-
scale eddy viscosity model are solved numerically for the time evolution of
the LES field functions. This involves discretization in space and time, which
introduces differences between the differential equations and their numerical
equivalent. The solution iterative strategy is to solve for large scale velocity �v and
vorticity �ω field functions and then to compute subgrid-scale eddy viscosity until
convergence, repeating the iterative process if needed. The solution scheme is as
follows:

1. Solve the filtered Navier–Stokes LES equations
1.1 Update subgrid-scale eddy viscosity νs

2. Check convergence for �ω. If not, go to 1.

6 Two-dimensional natural convection in a differently heated
cavity of aspect ratio 4

We consider a cavity of height H = 4 and width W = 1, aspect ratio
A = H/W = 4, filled with a Newtonian viscous fluid. It is submitted to a
temperature difference �T = Th − Tc > 0 at the vertical walls, with uniform
temperatures Th = 0.5 and Tc = −0.5, respectively, while the top and bottom
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Figure 1: Development of heat flux expressed by Nusselt number.

walls are adiabatic.Two non-uniform numerical models are considered consisting
of M = 40 × 160 and M = 60 × 240 macro elements with the aspect ratio
of 1 : 4 in the x− and y−direction. Three-node quadratic boundary elements
and nine-node quadratic internal cells are applied. The time dependent numerical
simulation is performed with the dimensionless time step �t = 5 · 10−4.

Turbulent natural convection in a differently heated air-filled cavity of aspect
ratio 4 with adiabatic horizontal walls is investigated by large eddy simulation
LES and unsteady mean flow URANS numerical integration of the unsteady
two-dimensional governing equations. In order to approach chaotic flows which
exhibits randomness in space as well as in time, simulations for different Rayleigh
number values, e.g. Ra = 6.4 · 108, and for Prandtl number value Pr = 0.71 are
performed.

timestep
20 40 60 80

-200

-100

0

100

200

300
Vx
Vy

timestep
50 100

-200

-100

0

100

200

300
Vx
Vy

Figure 2: Time traces of horizontal and vertical velocity components recorded at
location (0.75,0.25). LES turbulence model (left), URANS turbulence
model (right). Ra = 6.4 · 108
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Figure 3: The temperature field at Ra = 6.4 · 108. Three instantaneous timesteps
are shown. Turbulence is modelled by URANS approach.

Figure 1 shows heat flux expressed by Nusselt number. The value of 48.3 was
recorded at the final time step. This compares well with Nu = 49.2, which was
reported by Xin and Le Quéré [9] and with Nu = 49.08 reported by Ravnik
et al. [8]. Figure 2 shows the time traces of horizontal and vertical velocity
components recorded at location (0.75,0.25) for both turbulence models. The
location is inside the vortex, which is located in the corner of the enclosure.
We observe rapid changes in the velocity field. Finally, Figures 3 and 4 show
instantaneous temperature contours for several time instants. One can readily
observe the unsteady nature of the flow.

7 Conclusion

In this work a numerical procedure based on the boundary element method
for the simulation of turbulent buoyancy-driven two-dimensional fluid flow in a
differentially heated air-filled cavity of aspect ratio 4 is investigated. The flow
circumstances for the Rayleigh number value Ra = 6.4 · 108 are presented in
this paper. Relatively course mesh consisting of 40 × 160 macro elements is
used in the numerical model. The periodic oscillations of the field functions in
the downstream parts of the boundary layers in the form of Tollmien–Schlichting
waves are detected. Rather large fluctuations are observed in the cavity corners
where the flow is very chaotic. The main cavity core is still well stratified and
basically motionless, therefore the flow is still far from being turbulent. With
increasing Ra the cavity core becomes deorganised and chaotic. Finer mesh, e.g.
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Figure 4: The temperature field at Ra = 6.4 · 108. Three instantaneous timesteps
are shown. Turbulence is modelled by LES approach.

consisting of 60 × 240 macro elements, have to be used to accurately simulate
turbulent flow structures at higher Ra number values.

Low Reynolds number k − ε and LES turbulence modelling methodologies
have been considered. Iterative strategy of highly nonlinear and coupled governing
equations is discussed. The main goal of the paper is to increase the applicability
of BEM technique to solve real turbulent fluid flow problems.
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[7] L. Škerget and J. Ravnik (2009) Boundary element analysis of general
laminar and turbulent fluid flow problems, in 2nd South-East European
Conference on Computational Mechanics. Institute of Structural Analysis &
Seismic Research, National Technical University of Athens.
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