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Abstract 

The Boundary Element Method (BEM) was applied to the solution of bubble 
dynamics in an ideal fluid. Two-dimensional (2D) and three-dimensional (3D) 
models have been developed and the results have been compared to the 
analytical solution. The results show that only the 3D model can correctly 
represent the physics of the problem. The influence of the model parameters on 
the solution has been investigated for a single bubble.  
Keywords: BEM, numerical simulation, bubble dynamics. 

1 Introduction 

A great amount of work has been conducted in the area of bubble dynamics 
which can be seen in the review papers by Plesset and Prosperetti [1] and Feng 
and Leal [2]. During the course of bubble oscillation, jet formation is a common 
phenomenon. As pointed out by Tsiglifis and Pelekasis [3], even when the 
bubble shape is initially very close to spherical, asymmetric collapse happens at 
the following stage and it gives rise to jet formation. The bubbles in the acoustic 
field can oscillate or they can collapse producing high temperatures and possibly 
jets. The creation of high temperature spots can help chemical reactions and this 
phenomenon is used in sonochemical reactors. 
     With advancement of the computational technology, numerical studies have 
been carried out in order to understand the bubble dynamics. One of the 
numerical techniques used is the Boundary Element Method (BEM) which 
possesses unique advantages in respect to other numerical techniques for these 
types of problems. Indirect BEM has been employed by Wang and Khoo [4] who 
pointed out that both source and dipole distribution methods encounter 
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difficulties arising from hyper-singular integrals. By contrast, direct BEM solves 
the unknown (either potential or derivative) on the surface of the bubble in a 
direct way. One problem by applying the direct BEM is that the solution is only 
provided for the normal velocity on the bubble surface while the tangential 
components, which are also required, are not provided. Zhang et al. [5] applied a 
finite difference scheme to evaluate the tangential velocity (2D) or two tangential 
velocities (3D), thereby obtaining the material velocity on the bubble surface. 
This approach cannot guarantee sufficient accuracy for the velocity. When the 
simulation involves time history, errors accumulate and may result in 
computational instability. 
     In this work a BEM code has been developed to simulate bubble dynamics. 
The problem includes moving boundaries of the pulsating sphere which with 
time accumulates errors leading to numerical instabilities. A scheme has been 
applied in order to deal with the numerical instability and the model has been 
verified by comparison with the Rayleigh-Plesset equation.  

2 Description of the problem 

Let us consider a single bubble where the surrounding fluid represents the 
domain for numerical computation. The boundary of the problem is defined with 
the surface of the bubble, the fluid free surface and the solid structure(s) that may 
enclose the fluid or alternatively an imaginary boundary at infinity. 
     Bubble dynamics is essentially a time-dependent process, involving bubble 
expansion and collapse, bubble translation, jet formation, and possibly bubble 
separation and merging (for multiple bubbles). However, all of these 
mechanisms can be summarised as the consequence of the geometric evolution 
of the bubble surface, which is driven directly by the pressure difference between 
the bubble interior and exterior. In such sense, the problem is generally focused 
on the shape variation and moving of the bubble surface, which represents a 
moving boundary problem. The nature of the problem of bubble dynamics 
justifies the choice of the BEM numerical approach. 
     The boundary conditions involve generally the potentials and velocities. In 
case of the solid boundary, the normal velocities are set to be zero. The 
conditions on the bubble surface govern the bubble evolution. The subtle change 
of the boundary exerts highly sensitive outputs of velocities on the boundary; on 
the other hand, the normal velocities generated directly from BEM and the 
tangential velocities obtained from the potentials are used to update the geometry 
of the bubble surface. Hence both the geometry and the velocities on the 
boundary influence each other. As a result, the precision of boundary conditions 
determines how stable and accurate the numerical simulation is, as even small 
errors will be accumulated and will give rise to a bubble surface error as the time 
progresses. 
     The pressure governs the bubble surface evolution in time. Usually the 
pressure at the bubble interior can be described with a gas state equation. The 
pressure at the bubble exterior may be due to atmospheric pressure, hydraulic 
pressure, buoyancy forces, as well as the acoustic forcing. 
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3 Theoretical foundation 

3.1 Boundary integral equation 

The fluid is assumed to be incompressible, homogeneous, inviscid and 
irrotational. The idealised fluid flow is governed by Laplace equation, i.e.: 

 02   , (1) 

where ߶ is the velocity potential of the fluid and the normal velocity on the 

surface of the bubble can be defined as െ
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. Hence the above Laplace equation 

has the following representation in the integral form: 
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     The coefficient c(p) is a function of the solid angle of the boundary at the 
collocation point p (see Figure 1). With p located inside the domain, c(p) is fixed 
as 1.0 and for p on a smooth boundary c(p) becomes 1/2. However, the boundary 
is more realistically of irregular shape, which requires repeated laborious 
computation for c(p). Alternatively, c is calculated in an indirect way by 
physically considering a constant potential, which is explained in more detail in 
the book by Brebbia and Dominguez [6]. G stands for the fundamental solution: 
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Figure 1: The general structure for modelling with boundary integral 
equation where the boundary is made up of the bubble surface Sb, 
the free surface  Sf,  the solid boundary Ss and the imaginary 
boundary at infinity S∞. 
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3.2 Bernoulli equation 

The boundary integral equation is capable of solving the bubble problems in a 
stationary state. When it comes to bubble oscillation with time, the modified 
Bernoulli equation should be introduced to describe the dynamic boundary 
conditions at the interface. By neglecting the effects of viscosity, buoyancy force 
and surface tension, the Bernoulli equation is expressed as follows: 
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where ∆݌෤ is the pressure difference on the boundary. Note that the symbol ‘~’ 
represents the physical quantity of a parameter; without ‘~’ it indicates a 
dimensionless quantity. For any point qאS (see Figure 1), the particle velocity is: 
 

 
~~

~
~ 

tD

Dq
u . (5) 

 
     Meanwhile, the pressure difference at the bubble interface follows: 
 

  pppp ab
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where ݌෤݌ ,࢈෤ࢇ and ݌෤ஶ are the pressure at the bubble interior, the standard 
atmospheric pressure and the pressure at infinity.  
     We consider a bubble that embraces air (assumed to be ideal gas) and vapour. 
The bubble interior is assumed uniform in terms of pressure, temperature and 
composition. In addition, the idealised gas has a polytrophic behaviour. Then the 
internal pressure follows the gas state equation: 
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where ݌෤௩ is the vapour pressure assumed constant, ݌෤଴ is the initial pressure 
contributed by air with the corresponding initial bubble volume  ෨ܸ଴, and γ is the 
ratio of specific heat (see Figure 2). The standard atmosphere pressure ݌෤ࢇ is 
applied as the pressure scale. In addition, we prescribe the length and time scales 

as ෨ܸ଴

భ
య and  ෨ܸ଴

భ
యඥߩ෤௟/݌෤௔, respectively, then Bernoulli equation is obtained in the 

following form: 
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Figure 2: A spherical bubble composed of vapour and air with the pressure, 
temperature and composition evenly distributed. 

4 Numerical scheme 

4.1 Numerical procedure 

The initial state of the bubble(s) should be prescribed to carry out the numerical 
simulation. In case of a single spherical bubble, Blake and Gibson [7] proposed a 
mathematical formula to obtain a reasonable initial potential on the boundary. 
This formula can be derived from the Rayleigh-Plesset equation: 
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where ෨ܴ௠ is the maximum radius that the bubble can reach under the constant 
pressure difference Δ݌෤ ൌ ෤௕݌ െ  ෤ஶ. The above equation sets both the initial݌
radius and the maximum radius as known and it is beneficial as a predictable 
maximum bubble size can be used as an important parameter for reference 
during the bubble oscillation. Nonetheless, the formula is only restricted to the 
vapour bubble with constant internal pressure which is driven by a constant 
pressure forcing from outside. More generally, it is more reasonable to prescribe 
the initial conditions of the bubble(s) as stationary, i.e. u=-0=߶׏, or written in 

another way, the normal potential derivatives 
డథ

డ࢔ሬሬԦ
 on the boundary are known. 

Hence the corresponding potentials can be obtained by discretising the boundary 
and constructing the matrices so as to solve the integral equations with Neumann 
boundary conditions. Thereafter, the Runge-Kutta method is employed to update 
the potentials on the boundary. Once new potentials on the boundary are 
determined, the normal potential derivatives can be calculated. Both the 
potentials and their derivatives are used to obtain the material velocities on the 
bubble surface and the geometry of the bubble surface is ready for update. On 
the same principle to update both the potentials and the bubble geometry, 
repetition is carried out likewise and the bubble oscillation with a clear time 
history is depicted. However, special care should be taken during 
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implementation of the numerical techniques in order to guarantee the accuracy of 
results and the stability of the model. 
     The developed programme allows us to select different orders and types of 
elements. Herein, the quadratic quadrilateral element is put forward for 
illustration. When the boundary is discretised, the information is created on the 
number of nodes and elements, together with the arrangement of nodes in each 
individual element. The employed order of nodes in an element can be seen in 
Figure 3, which determines not only the order of interpolation coefficients Φi, 
but also the direction of the unit normal. The interpolation coefficients are given 
as:  
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where both η1 and η2 are in the range of (-1, 1). Meanwhile, the right-hand rule is 
applied for the direction of the unit normal, as shown in Figure 3. The unit 
normal vector with respect to the surface is given as: 
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Figure 3: The position of nodes on an element and the normal vector 
determined with the right-hand rule. 

     After dicretisation of the boundary, the system matrix coefficients can be 
evaluated and the matrix can be assembled. With the application of quadratic 
quadrilateral elements, the potential and the derivatives ought to be interpolated 
from (10). Correspondingly, (2) has the following discretised form: 

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

78  Boundary Elements and Other Mesh Reduction Methods XXXIII



 

   

  

 

 

































































m

i s j
jj

m

i s j

j
j

d
n

G

d
n

Gc

i

i

1

9

1

1

9

1

),(
                  

),()()(










qp

qppp
. (12) 

where m stands for the number of elements on the boundary. Integration on each 
element Si is operated by isoparametric Gaussian quadrature. When the 
collocation point is allocated on the integrated element as a singularity point, an 
extra measure should be taken. Chahine and Perdue [8] evaluated the strongly 
singular integrals analytically. In this work, the third-degree coordinate 
transformation proposed by Telles [9] has been employed.  
     Once the unknown field variables are obtained from (12), the evaluation for 
the next time step can begin. The time scheme is constructed by the Bernoulli 
equation with the form of ordinary differential equations. To secure high 
accuracy, a fifth-order Runge-Kutta formula is employed. The step size is 
adaptive rather than constant, which depends on the embedded criterion (see 
Cash and Karp [10]). The scheme is given in (14): 
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where the coefficients a, b and c are constant and known, for more details see 

Press et al. [11]. However, (8) tells us that 
஽థ

஽௧
 cannot be updated between the 

current and next time steps, as both the velocity and pressures have yet to be 
determined. Hence, one more physical criterion is established as follows: 























p
V

p

d
t

1
1

||
2

1
max 0

2

max 



 ,

 (14)

 

where the denominator on the right hand side of the equation above is the 

maximum value of 
஽థ

஽௧
 along the whole boundary. With the predefined maximum 

potential jump d߶, the Δݐ is available as the maximum step size to the next time 
step. Generally d߶ is set at the level of O(10-2), as shown previously by Taib 
[12] who used 0.08 and by Wang et al. [13] who used 0.03. 

4.2 The smoothing scheme 

The implementation of surface smoothing is one of the key points to maintain the 
stability during the simulation. We introduce a spherical single bubble. When it 
is subjected to symmetric pressure in a infinitely open field, the spherical shape 
is preserved. Nonetheless, the inevitable tiny errors for each time step 
accumulate and the bubble gradually loses its spherical shape. In case of 2D, the 
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curve becomes saw-teeth shaped, whist convex and concave appear alternately 
on the surface of the 3D bubble (see Figure 4).  
     The implemented smoothing scheme is based on the technique of least 
squares. The basic idea is to predefine the smoothing function in advance with a 
certain number of unknown coefficients. Then a greater number of nodes are 
picked up around the targeted nodes to be smoothed. Once the least squares 
problem is solved, the new coordinate is determined by the smoothing function. 
 

 
(a)                                          (b) 

 
(c)                                          (d) 

Figure 4: The meshes for a single bubble in two dimension and three 
dimension: (a) 2D before smoothing; (b) 2D after smoothing; (c) 
3D before smoothing; (d) 3D after smoothing. 

     For 2D, the function is in the form of a polynomial representation referred to 
a local coordinate system: 
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while the function for 3D is represented by a biquadratic equation as: 
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where the symbol ‘ˊ’ indicates values after smoothing. In the case of a 2D 
problem, three unknown coefficients are included in the function; hence we pick 
up four neighbouring nodes in addition to the targeted node itself. By contrast, 
the way to select nodes in the 3D case is a bit more complex. More than six 
nodes ought to be selected in accordance with the unknowns in the smoothing 
function. We employed the approach proposed by Zhang et al. [5]. Firstly, we 
find l nodes which are immediately neighbouring to the targeted nodes. Then 
with reference to each of the l nodes, the neighbouring nodes in the second level 
are found, adding up m nodes. Finally, the third level of neighbouring nodes are 
found in the same way based on the m nodes at the second level, in this case we 
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denote them with n. Therefore, we have in total l + m + n + 1 nodes to smooth 
the boundary involving targeted nodes. 
     To guarantee the serviceability of smoothing, the principle should be strictly 
followed that the new normal vector at the targeted point should be the same or 
highly similar to the old one before smoothing. Zhang et al. [5] suggested an 
iterative method to compute the new normal vector, based on which the local 
frame is determined. 
     Moreover, the potential is also required for smoothing to avoid a ‘jump’ from 
one node to its neighbouring nodes for which the same scheme applies. Figure 4 
displays comparison of the bubble before and after smoothing. 

5 Verification and analyses 

5.1 Verification of the model 

The developed model is capable of simulating bubble oscillation in both two and 
three dimensions. Before carrying out the investigation on the bubble dynamics, 
the model should be verified. Herein the Rayleigh-Plesset equation is introduced 
as an analytical solution for the bubble oscillation which is compared to the one 
obtained by using the model. 
     Further we refer to the Rayleigh-Plesset equation as the ‘Rayleigh-Plesset 
bubble’. The Rayleigh-Plesset bubble is assumed to be perfectly spherical with a 
radius R0 at the initial state t =0. The Rayleigh-Plesset equation is represented 
by: 
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     Substituting pb with the dimensionless form of (7), the equation above is 
modified as: 
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     To compare the results, input values are used as shown in Table 1. The radius 
variation with time is shown in Figure 5. The results show that the bubble 
oscillation based on the 3D model is in agreement with that of the Rayleigh-
Plesset bubble. However, the bubble from the 2D model oscillates with 
apparently different frequencies and phases, despite of the similar amplitude. 
Therefore, the 3D model proves its applicability for modelling the bubble 
dynamics, whilst the 2D model apparently cannot be used, as it represents 
oscillation of an infinite cylinder rather than a 3D sphere. 

Table 1:  Input values for verification of bubble oscillation. 

 

 

R0 0.1 γ 1.4 
pv 1.0 p0 2.0 
p∞ 2.0   
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Figure 5: The radius variation of the oscillating bubble against time where 
three curves correspond to results from the Rayleigh-Plesset 
equation, 2D model and 3D model. 

5.2 Oscillation of a single bubble 

This example investigates the oscillation of a single bubble located in an infinite 
domain. The following factors are investigated: the initial bubble size, the air 
pressure at the bubble interior and the initial bubble-fluid interface velocity 
(i.e. ׏߶). 
     Figure 6 depicts bubble oscillations of different initial radii. The amplitude 
tends to be bigger when the initial radius of the bubble increases. Also, the 
bigger initial bubble possesses a lower frequency. Meanwhile the oscillating 
frequency decreases when the pressure amplitude increases (Figure 7). 

 

Figure 6: The oscillation of single bubbles with different initial radii (p0=2.0 
and 0=߶׏). 
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Figure 7: The oscillation of single bubbles with different initial air pressures 
(R0=0.1 and 0= ߶׏). 

     The influence of the initial bubble-fluid interface velocity on the bubble 
dynamics may be comparatively more complicated. Even the same amplitude of 
the velocity may not guarantee an identical process. As shown in Figure 8, plot 
(a) is for initial normal velocity forcing the bubble to expand, and the higher 
normal velocity produces higher oscillation amplitude. When the interface 
velocity direction is set towards the bubble interior, the bubble initially 
compresses corresponding to the velocity direction and then it expands. Both 
plots show that the initial velocity of the interface enlarges the amplitude of the 
oscillations.  
 

 
(a)                                                          (b) 

Figure 8: The oscillation of a single bubble with different initial interface 
velocities (p0=2.0 and R0=0.1). (a) Velocity towards exterior; 
(b) velocity towards interior. 

6 Conclusions 

A numerical model has been developed for the problem of bubble dynamics. The 
model has been developed for the 2D and 3D cases. The model has been verified 
by using the Reyleigh-Plesset equation for oscillation of single bubble. The 
comparison of the results of the 2D and 3D models with the Reyleigh-Plesset 
equation shows that the 2D model cannot be used to accurately predict the 
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behaviour of the bubbles, while the 3D model is in good agreement with the 
analytical solution. Once verified the model has been used to investigate the 
influence of several parameters on the single bubble dynamics.  
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