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Abstract

In this paper a Boundary Element Method based numerical algorithm is presented
for the simulation of three-dimensional unsteady fluid flow and heat transfer.
Four different time discretization techniques are considered and compared on
a model unsteady heat diffusion problem. Analytical solution of the problem
is used to designate the three point second-order finite different approximation
of the accumulation term of the transport equations as the most accurate. This
choice is incorporated into the flow solver and the developed algorithm is used
to simulate Rayleigh–Bénard convection. Oscillatory and chaotic behaviour of the
flow field and heat transfer are observed. Temperature slices and velocity vectors
are presented. Heat flux is presented in terms of the Nusselt number.
Keywords: Boundary Element Method, Rayleigh–Bénard convection, velocity-
vorticity formulation, time discretization.

1 Introduction

The Boundary Element Method (BEM) is a numerical technique that has been
successfully applied for the solution of a wide variety of engineering problems and
natural phenomena. In this paper we are focused on unsteady natural convection
phenomena. A transient simulation is required, which must be able to capture the
oscillatory and chaotic nature of the flow problem.

The paper presents a BEM based laminar viscous flow solver and focuses on the
time discretization. Three implicit finite difference approximations and an explicit
approximation of the accumulation term of the transport equations are compared
against an analytical solution of a model problem. The three point second order
finite difference approximation is then incorporated into the flow solver and used
to obtain an unsteady solution of the Rayleigh–Bénard convection problem.
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2 Governing equations

We consider laminar viscous fluid flow coupled with heat transfer in three-
dimensional setting. The fluid properties are assumed constant. Buoyancy
is modelled within the Boussinesq approximation, where density variation
with temperature is considered only in the momentum source term. The
non-dimensional velocity-vorticity formulation of Navier–Stokes equations for
simulation of laminar viscous fluid flow coupled with heat transfer consists of the
kinematics equation, the vorticity transport equation and the energy equation:

∇2�v + �∇× �ω = 0, (1)

∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v + Pr∇2�ω − PrRa�∇× T�g, (2)

∂T

∂t
+ (�v · �∇)T = ∇2T. (3)

Here, the velocity field is denoted by �v, the vorticity by �ω and temperature by
T . The flow and heat transfer of a fluid is defined by specifying the Rayleigh Ra
and Prandtl Pr number values. They are defined as

Pr =
νρcp

λ
, (4)

where ν is the kinematic viscosity of the fluid, ρ is the density, cp thermal capacity
and λ heat conductivity. The Rayleigh number is defined by

Ra = Pr
gβ∆TL2

ν2
, (5)

where β is thermal expansion coefficient, g = 9.81m/s2, ∆T is the characteristic
temperature difference and L is the characteristic length scale of the system.

3 Time discretization

The main aim of this work was to study transient phenomena. We chose Rayleigh–
Bénard convection for the test case. When fluid is heated from below, it very soon
becomes unsteady and exhibits a wide range of time dependent phenomena. In
order to estimate the accuracy of time discretization, we compared three implicit
approximations of the time derivative and an explicit Runge–Kutta scheme.

In order to be able to compare the accuracy of different schemes, we chose the
following heat transfer example. Consider a thermally isolated thin thread of length
π. At the beginning of the simulation the thread has a certain temperature profile.
As time passes the thread cools by emitting heat flux through both ends. Since the
thread is isolated, there is no heat flux through the casing, and the problem can be
treated as one-dimensional. The material properties of the thread are such, that the
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following equation is valid
∂T

∂t
=

∂2T

∂x2
. (6)

The equation includes only accumulation and diffusion terms and is a
simplification of (3), where the advection term is also present. At t = 0 a triangular
temperature profile is applied to the thread.

T (x, 0) =




2
x

π
, x ∈ (0, π/2);

2
π − x

π
, x ∈ (π/2, π).

(7)

A Dirichlet boundary condition is applied on both sides, i.e. T (x = 0) = 0 and
T (x = π) = 0. Figure 1 shows the sketch of the problem along with boundary
and initial conditions. The analytical solution of the problem gives temperature
dependence of x and time. It is (Weisstein [1]):

T (x, t) =
2
π

∞∑
n=0

{
2
∫ π/2

0

sin(nx)
x

π
dx + 2

∫ π

π/2

sin(nx)x
π − x

π
dx

}
·

· sin(nx)e−n2t. (8)

The time dependent diffusion equation (6) is discretizised using subdomain
BEM technique. Denoting the subdomain with Ω and its boundary with Γ, the
following integral equation is obtained

c(�ξ)T (�ξ) +
∫
Γ

T �∇u∗ · �ndΓ =
∫
Γ

u∗qT dΓ +
∫
Ω

f(T, T ′, T ′′, ∆t)u∗dΩ, (9)

x

T

0

T = 0

π0

1

π/2

T = 0

q = 0

q = 0

Figure 1: Boundary and initial conditions for time depended diffusion test case.
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where �ξ is the source or collocation point, �n is a vector normal to the boundary,
pointing out of the domain and u� is the fundamental solution for the diffusion
operator: u� = 1/4π|�ξ−�r|. qT is the heat flux defined by qT = �∇T ·�n. c(�ξ) is the
geometric factor defined as c(�ξ) = α/4π, where α is the inner angle with origin
in �ξ.

Function f(T, T ′, T ′′, ∆t) denotes the discretization of the time derivative;

∂T

∂t
= f(T, T ′, T ′′, ∆t). (10)

The discrete version of the partial time derivative may depend on the time step
∆t, temperature in the next time step T , temperature in the current time step T ′

and temperature in the previous time step T ′′.
Firstly, we consider first order backward Euler approximation of the time

derivative defined by
∂T

∂t
≈ T − T ′

∆t
, (11)

secondly the second order trapezoid scheme

∂T

∂t
≈ 1

2
T − T ′

∆t
+

1
2

T ′ − T ′′

∆t
=

1
2

T − T ′′

∆t
, (12)

and thirdly a three point second order scheme defined by

∂T

∂t
≈ 3T − 4T ′ + T ′′

2∆t
. (13)

The three finite difference approximation of the time derivative are all implicit,
i.e. they include a temperature value that must be calculated. This contribution is
added to the system matrix when the system of linear equations is formed.

Furthermore, we consider an explicit Runge–Kutta type scheme. Since the
scheme is explicit, we estimate the partial time derivate in the present time step and
use its value to get the function value at the next time step. Fourth order scheme
was used, given by the following algorithm

1. T (1) = T ′ + 1
4∆t

[
a∂2T

∂x2

]′
2. T (2) = T ′ + 1

3∆t
[
a∂2T

∂x2

](1)
3. T (3) = T ′ + 1

2∆t
[
a∂2T

∂x2

](2)
4. T = T ′ + ∆t

[
a∂2T

∂x2

](3)
Time step size for the Runge–Kutta scheme is limited by the Courant–

Friedrichs–Lewy stability condition:

∆t ≤ µ∆x

δ
, (14)

where µ < 1 is the Courant–Friedrichs–Lewy number, δx the mesh size and δ a
characteristic velocity.

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 52, © 2011 WIT Press

52  Boundary Elements and Other Mesh Reduction Methods XXXIII



Table 1: Comparison of temperature in the middle of the domain; T (π/2, 1).

∆t No. of time steps Euler Trapezoid 3 point Runge–Kutta

0.1 10 0.3127 0.3263 0.2995

0.01 100 0.2997 0.3012 0.2982

0.001 1000 0.2984 0.2985 0.2982

0.0001 104 0.2982

Analytical 0.2982 0.2982 0.2982 0.2982

The four time discretization schemes using different time steps were compared
against the analytical solution. A time of t = 1 was chosen to compare temperature
profiles. A mesh of 100 equidistant quadratic elements having 201 nodes in x
direction was used to solve the problem. Table 1 provides temperature values in
the middle of the domain (at x = π/2) for different time steps along with the
analytical solution. Figures 2 and 3 show the comparison of temperature profiles
at t = 1.

The results clearly show, that the three point scheme (13) gives the most accurate
results. The explicit scheme also yields very accurate results, but unfortunately
requires a very large number of time steps, due to the Courant-Friedrichs-Lewy
(14) stability condition.
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Figure 2: Time dependent solution of diffusion equation. Comparison of analytic
and simulated temperature profiles for different time step lengths. Left
backward Euler scheme and right trapezoid scheme.
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Figure 3: Time dependent solution of diffusion equation. Comparison of analytic
and simulated temperature profiles for different time step lengths. Left
three point scheme and right Runge Kutta scheme.

4 Numerical method

With the choice of the time discretization established, we proceeded to rewrite the
governing equations (1)–(3) in integral form. Three-dimensional solver capable of
steady simulating flow and heat transfer by solving velocity-vorticity formulation
of Navier–Stokes equations by a combination of single and sub-domain BEM was
developed by Ravnik et al. [2, 3]. Integral equations were written in the same
manner with an addition of the discretization of the accumulation term.

The kinematics equation is

c(�ξ)�n(�ξ) × �v(�ξ) + �n(�ξ) ×
∫
Γ

�v�∇u� · �ndΓ

= �n(�ξ) ×
∫
Γ

�v × (�n × �∇)u�dΓ + �n(�ξ) ×
∫
Ω

(�ω × �∇u�)dΩ. (15)

In order to write a linear system of equations for the unknown boundary
vorticity values, we set the source point into every boundary node of the whole
computational domain. This yields a full system matrix where number of rows
and columns is equal to number of boundary nodes. It is solved using a LU
decomposition method.

The partial derivative with respect to time in the kinetics equations is
approximated by second order three point finite difference scheme. The final forms
of vorticity transport and energy equation are

c(�ξ)ωj(�ξ) +
∫
Γ

ωj
�∇u∗ · �ndΓ =

∫
Γ

u∗qjdΓ +

+
1

Pr

(∫
Γ

�n · {u∗(�vωj − �ωvj)} dΓ −
∫
Ω

(�vωj − �ωvj) · �∇u∗dΩ
)
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−Ra

(∫
Γ

(u�T�g × �n)jdΓ +
∫
Ω

(T �∇× u��g)jdΩ
)

+
1

Pr

1
2∆t

∫
Ω

(3ωj − 4ω′
j + ω′′

j )u∗dΩ, (16)

c(�ξ)T (�ξ) +
∫
Γ

T �∇u∗ · �ndΓ =
∫
Γ

u∗qT dΓ +
∫
Γ

�n · {u∗(�vT )} dΓ

−
∫
Ω

(�vT ) · �∇u∗dΩ +
1

2∆t

∫
Ω

(3T − 4T ′ + T ′′)u∗dΩ, (17)

where ωj is the jth component of vorticity.
In the subdomain BEM method we make a mesh of the entire domain Ω

and name each mesh element a subdomain. Equation (16) is written for each
of the subdomains. In order to obtain a discrete version of (16) we use shape
functions to interpolate field functions and flux across the boundary and inside
of the subdomain. In this work we used hexahedral subdomains, which enable
continuous quadratic interpolation of field functions. On each boundary element
we interpolate the flux using discontinuous linear interpolation scheme. By using
discontinuous interpolation we avoid flux definition problems in corners and edges.
A function, e.g. temperature, is interpolated over a boundary elements as T =∑

ϕiTi, inside each subdomain as T =
∑

ΦiTi, while flux is interpolated over
boundary elements as q =

∑
φiqi. The following integrals must be calculated:

[H ] =
∫
Γ

ϕi
�∇u� · �ndΓ, [G] =

∫
Γ

φiu
�dΓ, [ �A] =

∫
Γ

ϕi�nu�dΓ, (18)

[B] =
∫
Ω

Φiu
�dΩ, [ �D] =

∫
Ω

Φi
�∇u�dΩ. (19)

The square brackets denote integral matrices. In order to calculate the integrals,
a Gaussian quadrature algorithm is used. Calculation of the free coefficient c(�ξ)
is preformed indirectly considering rigid body movement problem solution. The
calculated c(�ξ) are added to the diagonal terms of the [H ] matrix.

The source point is set to all function and flux node in each subdomain. Since
neighbouring subdomains share nodes, the resulting systems of linear equations
are over-determined. After taking into account the boundary conditions, we solve
them using a least squares solver (Paige and Saunders [4]). All integrals depend
only on the shape of subdomains and as such may be calculated only once, prior
to the start of the nonlinear iterative process.

The algorithm used to solve the set of governing equations (1)–(3) is devised
as follows. Either Dirichlet or Neumann type boundary conditions for velocity and
temperature must be known. In this paper we use the no-slip boundary condition on
all solid walls and prescribe temperature or temperature flux. Boundary conditions
for vorticity are unknown and are calculated as a part of the algorithm. The
following steps are performed.
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Within each time step do the following. Firstly, calculate vorticity values on
the boundary by single domain BEM from the kinematics equation (1). Secondly
calculate velocity values by sub-domain BEM from the kinematics equation (1).
Next calculate temperature values by sub-domain BEM from the energy equation
(3). Next calculate vorticity values in the domain by sub-domain BEM from
the vorticity transport equation (2). Finally check convergence. If all flow fields
converged to 10−6 stop, else go to 2. When a time step has converged, advance
the flow fields for one time step, i.e. use T ′′ = T ′ and T ′ = T and repeat the
procedure for the next time step. Convergence was accelerated using an algorithm
for adaptive setting of solver accuracy, developed by Ravnik et al. [5].

5 Rayleigh–Bénard convection

In order to test the capability of the method to simulate unsteady flows, we
simulated the Rayleigh–Bénard convection (Solomon and Gollub [6], Shan [7]).
The domain was a cubic cavity, where the bottom wall was heated to a constant
temperature and the top wall cooled to an also constant but lower temperature.
The temperature difference between the walls defines the Rayleigh number for
this case. The vertical walls of the cavity are insulated. No-slip velocity boundary
conditions are applied on all walls. Boundary conditions are sketched in Figure 4.

Meshes of 163 elements having in total 333 nodes and mesh of 203 elements
with 413 nodes were used. Simulation were run with air (Pr = 0.71) as the
working fluid and Rayleigh number values of Ra = 105 and Ra = 106.
Nondimensional time step of ∆t = 0.001 was used. Preliminary results on the
coarse mesh proved significantly different from the results obtained on the fine
mesh, thus all simulations were preformed on the fine mesh.

In both cases (Ra = 105 and Ra = 106) the flow field was unsteady exhibiting a
variety of structures in the domain. Figures 5 and 6 show two times instants, giving

hot wall

cold wall

on
all
walls

adiabatic
vertical
walls

L

L

�v = 0
L

Figure 4: Boundary conditions for the simulation of Rayleigh–Bénard convection.
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Figure 5: Two slices showing the temperature field and velocity vectors at Ra =
105. There are 199 time steps between the left and right figure.
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Figure 6: Two slices showing the temperature field and velocity vectors at Ra =
106. There are 80 time steps between the left and right figure.

an impression of the changing temperature and velocity fields. For Ra = 105 these
changes are slow compared to the rapid and unpredictable flow and temperature
pattern at Ra = 106. After a long time, flow at Ra = 105 stabilised and reached
steady state. The final, steady flow field is shown in Figure 7.

During the simulation heat transfer through the top and bottom walls was
measured in terms of Nusselt number value. Usually, the heat flux Q̇ is expressed in
terms of fluid thermal conductivity, characteristic flow scale and a non-dimensional
Nusselt number, i.e. Q̇ = λL∆T ·Nu. The Nusselt number, Nu, is defined as the
integral of the temperature flux through a wall:

Nu =
∫
Γ

�∇T · �ndΓ, (20)
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Figure 7: Two slices showing the temperature field and velocity vectors at Ra =
105 for the final steady flow configuration.
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Figure 8: Development of heat flow through the top and bottom walls in the
Rayleigh–Bénard convection case; left Ra = 105, right Ra = 106.

where Γ is the surface through which we calculate the heat flux and �n is a unit
normal to this surface. We also study local variation of heat flux using the local
Nusselt number defined as Nul(x, y, z) = �∇T · �n.

The development of heat flux through time is shown in Figure 8. In the Ra =
105 case the heat flux slowly varies in time and reaches steady state after about
600 time steps. At steady state, heat fluxes through top and bottom walls are equal,
reaching Nu = 3.98. In the Ra = 106 case steady state is not reached. The chaotic
nature of the graphs indicates that the flow regime is past the oscillatory unsteady
phase in a chaotic regime heading towards turbulence at higher Rayleigh number
values.

Figure 9 shows heat flux variation through top and bottom walls for the Ra =
105 case. The heat flux is expressed using the local Nusselt number. Symmetric
distribution of fluxes is observed. This is consistent with the fact that the flow
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Figure 9: Heat flux (local Nusselt number) through the top (left) and bottom (right)
walls at Ra = 105.
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Figure 10: Heat flux (local Nusselt number) through the top (left) and bottom
(right) walls at Ra = 106.

reached steady state and that the same amount of heat entering the domain through
the bottom wall also exits through the top wall. Figure 10 presents the Ra = 106

case at some time during the simulation. Here steady state is not reached and the
heat fluxes through the top an bottom wall are distinctly different.

6 Summary and outlook

We presented a boundary element based method for simulation of unsteady
laminar viscous flows coupled with heat transfer. The method solves the velocity-
vorticity formulation of Navier–Stokes equations using a combination of single
domain BEM and subdomain BEM. A study of different approximations of time
derivate of the governing equations showed that the second order three point finite
difference approximation yields the most accurate results at a given time step size.
The algorithm was successfully used for simulation Rayleigh–Bénard convection,
showing a unsteady behaviour on the verge of chaos.
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In this work a diffusion type fundamental solution was used to write the integral
equation. In future, we plan to use the time dependent diffusion-advection type
fundamental solution, with which the need for discretization of the accumulation
term would be avoided. First successful attempts in this direction were done in 2D
by Škerget et al. [8] using the parabolic diffusion fundamental solution.
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