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Abstract 

Stress boundary integral equations (BIEs) are required in elastic or inelastic 
analyses of plate bending problems to obtain distributed shear, bending and 
twisting moments. Traction BIE, which is important to perform fracture 
analyses, is directly related to stress BIE. The collocation point position and the 
strategy to treat improper integrals are essential features studied in BIE for 
tractions or stresses at boundary points. The tangential differential operator 
(TDO) is used in stress and traction BIEs to reduce the strong singularities in the 
fundamental solution kernels and remaining singularities can be treated with the 
Cauchy principal value sense or the first order regularization. This study presents 
the application of the TDO for stress and traction BIEs used in plate bending 
models considering the shear deformation effect. The results in bending 
problems are obtained with traction BIE using TDO, instead of displacement 
BIE, and are compared to those in the literature where the problem was solved 
with traction BIE containing the strong singularity or with displacement BIE. 

1 Introduction 

Distributed shear, bending and twisting moments required in plate bending 
analyses are computed with stress BIEs. The differentiation in the fundamental 
solution kernels of displacement BIE, to obtain BIEs for stresses, increases the 
order of singularities. Strong singularities appear in fundamental solution kernels 
of stress BIE when values at boundary points are required as well as in those of 
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traction BIE because these equations are related according to the Cauchy formula. 
The collocation point position and the strategy to treat improper integrals are the 
essential features studied in numerical implementations for traction or stress BIE in 
plate bending or in elasticity [1, 2]. The use of the tangential differential operator 
(TDO) in conjunction with the integration by parts is a way to reduce the order of 
singularities in stress or traction BIE when Kelvin type fundamental solutions are 
used. Kupradze [3] first presented an application using the tangential differential 
operator (TDO) and Sladek and Sladek [4] employed the TDO in a curved crack 
solution. Regularized boundary element formulations employing TDO for potential 
and elasticity problems, including fracture mechanics formulations, were presented 
by Bonnet in [5]. The dual boundary element formulation for two dimensional 
problems of linear fracture mechanics using TDO in traction BIE was studied in 
[6]. The strategy presented in [6], which allowed the application of TDO in 
problems using non-conformal interpolations, was extended in [7] for the traction 
BIE in three dimensional elasticity. 
     The purpose of this study is introducing the TDO in stress and traction BIEs 
for plate bending models including the shear deformation effect. Kelvin type 
fundamental solution is the main requirement to apply the TDO in conjunction 
with the integration by parts to reduce singularities in BIE. The motivation to 
apply the TDO in plate bending models lies on developed studies for [6]. The 
efficiency of stress BIE for two dimensional elasticity problems was improved 
when the strong singularity was reduced [8] and the main result was the 
application for fracture problems in [6]. It is necessary to note the boundary 
element meshes and positions for collocation points used in [6] were first tested 
for traction BIEs containing strong singularities in [9] and the results were not 
changed with reference to those available in the literature. The application of the 
TDO for plate bending models is similar but not equal to the algebraic 
manipulation presented in [6] or [7]. The plate bending model represents the 
equilibrium of out of plane loads by in-plane stresses non-uniformly distributed 
on the thickness [10]. 
     The boundary element formulation for plates using the TDO in BIE for 
stresses is extended to traction BIE. TDO was applied in the fundamental 
solution kernel with the strong singularity whereas other kernels remain 
unchanged. The results in bending problems are obtained with the traction BIE 
using TDO instead of displacement BIE and they are compared to those in the 
literature where the problem was solved with traction BIE containing the strong 
singularity or with displacement BIE. Fracture problems using the dual boundary 
element method (DBEM) were not considered because results in DBEM can be 
changed, too, according to the collocation point position of the displacement 
BIE, as shown in [11]. Thus, fracture problems will be analyzed in other study. 

2 Application of the tangential differential operator 

The equilibrium equations for an infinitesimal plate element under a transverse 
distributed loading q(xi) are next written with Latin indices considering values 
{1, 2 and 3} and Greek indices considering values {1, 2}: 
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 0Q,M   (1) 

 0q,Q   (2) 

     The plate has uniform thickness h and the constitutive relations are next 
written using a unified notation for the Reissner [12] and the Mindlin [13] 
model: 
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     D is the flexural rigidity,  is the Poisson ratio, w is the deflection, α is the 
plate rotation in the direction α, δαβ is the Kronecker delta. The product qRE in 
equation (3) corresponds to the linearly weighted average effect of the normal 
stress component in the thickness direction and should be is considered in the 
Reissner model but not in the Mindlin model, when it should be considered null 
in equation (3). Shear parameter 2 is equal to 5/6 and 2/12 for the Reissner and 
the Mindlin model, respectively. 
     A unified displacement BIE for the Reissner and the Mindlin model can be 
written in terms of generalized displacements and tractions presented in [14]: 
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where u is , u3 is w, t is the product M.n, t3 is the product Q.n. Ui
j 

represents the rotation (j=1,2) or the deflection (j=3) due to a unit couple (i=1,2) 
or a unit point force (i=3). Cij is an element of the matrix C related to the 
collocation point position that makes a diagonal matrix with elements equal to 1 
for internal collocation points or equal to 0.5 for collocation points on a smooth 
boundary. The integrand of the domain integral in equation (7) contains the RE 
factor, which should be cut off for analyses using the Mindlin model. 
     The application of the TDO will be next presented using Mindlin’s model to 
simplify the presentation because the difference with reference to Reissner’s 
model in the boundary element method corresponds to the introduction of RE 
parameter which is in an additional domain integral, as shown in equation (7) for 
the displacement BIE. The BIE for the deflection gradient at an internal point can 
be written using the differentiation in terms of field variables: 
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     The differentiation is performed over the following fundamental solution 
kernels in equation (8): 
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     The strong singularity is obtained from the differentiation over T3
3 whereas 

1/r singularities or logarithmic singularities result from differentiation over other 
terms. The TDO should be applied over the kernel related to T3

3. 
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     Dbm( ) is the tangential differential operator, which has the following 
definition: 
           yf ynyf ynyfD b,mm,bbm   
     The fundamental solution for a unit point force (i=3) is related to the 
equilibrium equation (2) in absence of the transverse distributed load q. Qβ,β

3 is 
equal to zero outside the source point which is the second term between brackets 
of equation (9). The final result from equation (9) is next written after the 
integration by parts to reduce the order of the singularity in the kernel, which 
changes the application of the TDO to u3, and allowing a discontinuity in the 
boundary line [6]: 

      





 





03
3

33
3

3
3
3 uQeduDQduT

x
 (10) 

eiβγ is the permutation symbol. 
     The term between brackets in equation (10) is cut off when the boundary line 
is continuous. The final expression for the deflection gradient is given by: 
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     The algebraic manipulation to introduce the TDO in the BIE for the rotation 
gradient at an internal point is similar but not equal to that presented for the 
deflection gradient because the BIE for plates relates the distributed shear and 
couples with the deflection and rotations in same equation. The forces and 
displacements are not the same type as in BIEs for two or three-dimensional 
elasticity and additional care is necessary. The BIE for the rotation gradient is 
next written using the differentiation in terms of field variables: 
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     The fundamental solution kernels of equation (12), where the differentiation 
is performed, are next written as was done for equation (8): 
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     An expansion for small arguments should be considered for terms containing 
modified Bessel functions with real arguments (K0, K1) in the analysis of the 
singularity. The strong singularity is obtained from the differentiation on Tβ

 ρ 
whereas 1/r singularities or logarithmic singularities types result from 
differentiation over other terms. The TDO is applied on the kernel related to Tβ 

ρ 
of equation (12): 

        
























































du
x

M
nMDdu

x

nM
duT

x
 (13) 

     The fundamental solution for a unit couple (ρ=1, 2) is related to the 
equilibrium equation (1). Mαβ,α

ρ is equal to Qβ
ρ outside the source point, which is 

a regular function for the unit couple solution [15]. The final result from 
equation (13) is next written after the integration by parts to reduce the order of 
the singularity in the kernel, which changes the application of the TDO to uβ, and 
allowing a discontinuity over the boundary line [6]: 
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     The term between brackets in equation (14) is cut off when the boundary line 
is continuous. The final expression for the rotation gradient is given by: 
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     The BIE for the distributed shear at internal points can be obtained using the 
constitutive equation (4) together with equations (7) and (11). 
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     The algebraic manipulation to get Qγ
β and Qγ

3 in equation (16) considered the 
symmetrical property of Uβ

α and that Uβ
3 is – U3

β. Furthermore, the field 
decomposition presented in [15, 16] can be used to check the symmetry relations 
notwithstanding the algebraic expressions used for fundamental solutions. 
     The BIE for bending and twisting moments at internal points is obtained with 
the constitutive equation (3) together with equation (15). The BIE is next written 
using the symmetrical property of Uβ

α and that Uβ
3 is – U3

β: 
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     The integrals of equations (16) and (17) are regular for internal points and 
exhibit singularities or singularity type of order 1/r when the field point 
approaches the collocation point. The BIEs for distributed shear and moments at 
a boundary point is defined as the limiting form of the corresponding BIE at an 
internal point when it is led to a point on the boundary. Equations (16) and (17) 
are next written for the collocation point on a smooth boundary: 
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     It is important to note the continuity requirement for the derivative of the 
displacement function at the collocation point. The BIEs for tractions are 
obtained from equation (18) and (19) when the distributed shear tensor and the 
moment tensor at the collocation point on the boundary point x’ are multiplied 
by direction cosines of the outward normal at this point (n’), i.e. the Cauchy 
formula: 
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     The collocation points must be positioned to satisfy the continuity 
requirements of BIEs for tractions. The continuity of the displacement function 
at x’ is the necessary condition for the generalized displacement BIE and it is 
satisfied when the collocation point is placed at the ends of the boundary element 
or inside the element. The continuities of the displacement and rotations 
derivatives at x’ are required for traction BIEs and they can be satisfied when the 
collocation point is placed inside the boundary element. 

3 Numerical implementation 

Linear mapping functions were used to represent displacements and efforts in the 
boundary elements. The same mapping function was used for conformal and 
non-conformal interpolations with nodal parameters positioned at the ends of the 
elements. The collocation points were shifted to the interior of the element at a 
distance of a sixth part of its length starting from the end. The collocation points 
were always positioned in the boundary line with the position (ξ’), in the range 
(-1, 1): i) ξ’= -0.67 for continuous elements; ii) ξ’= -0.67 and ξ’= +0.67 for 
discontinuous elements. Analytical expressions were used to evaluate singular 
integrals with the Cauchy principal value sense whereas the Gauss-Legendre 
scheme was used for regular integrals. An expansion for small arguments was 
considered for terms containing modified Bessel functions with real arguments 
(K0, K1) [17]. The diagonal terms were directly obtained using the mapping 
function and the collocation point position on the element. The numerical 
implementation for the tangential differential operator considered the 
differentiation of the mapping function according to the following relation [18]: 

            


  d

df

J

1
eyf ynyf ynyfD 3b,mm,bbm

 

     J is the Jacobian of the transformation and ξ is the intrinsic coordinate to 
perform the integration on the element. 

4 Example – the torsion of a cube 

The problem was analyzed with traction BIEs using the TDO, equations (20) and 
(21), replacing the displacement BIEs (equation (7)) for the solution with 
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boundary element method. The torsion of cube is used to show the precision of 
the formulation and justify the adopted position for the collocation point. A mesh 
with 128 linear discontinuous elements (256 nodes) along the sides was used. 
The results were compared with those presented in [1] where the traction BIE 
containing the strong singularity was used in a mesh containing 128 quadratic 
discontinuous elements (384 nodes) and with those presented by Weeën [14], 
that employed symmetry conditions in the solution with the displacement BIE 
using 8 quadratic continuous elements (16 nodes). The cube has the side length 
equals to 2a, two opposite faces are free of stress and other faces are under 
torsion according to Saint-Venant hypotheses (free warping). The generalized 
displacements were used to introduce torsion: 
 23 x a u   
 a u2   

 is the prescribed rotation angle 

Table 1:  Relative values of plate rotations in the normal 

direction  
 








a
x

n

2n . 

(x2/a) [12] [1] [14] ξ=0.5 ξ =0.67 ξ =0.75 
1.00 1.000 1.000 1.001 1.000 1.000 1.000 
0.75 -0.055 -0.051 -0.053 -0.096 -0.058 -0.034 
0.50 -0.387 -0.382 -0.386 -0.428 -0.389 -0.366 
0.25 -0.292 -0.290 -0.290 -0.317 -0.294 -0.280 
0.00 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

y 

x 

 

Figure 1: Torsion of a cube. 

     The greatest differences in results to values obtained by Reissner [12] 
appeared for plate rotations in the normal direction because these values are 
indirectly related with prescribed displacements. These rotations were used to 
qualify the collocation point position. The values for distributed shear and 
twisting moments are directly related to the constrained displacements, the 
differences to values obtained by Reissner [12] were low and they cannot be 
used to qualify the collocation point position or the boundary element solution. 
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Table 2:  Relative values of distributed shear  
 





aQ
xQ

n

2n . 

(x2/a) [12] [1] [14] ξ=0.5 ξ =0.67 ξ =0.75 
1.00 1.000 1.000 0.999 1.000 1.000 1.000 
0.75 0.638 0.638 0.638 0.640 0.640 0.636 
0.50 0.377 0.377 0.377 0.377 0.378 0.375 
0.25 0.174 0.174 0.174 0.175 0.175 0.174 
0.00 0.000 1.000 0.000 0.000 0.000 0.000 

Table 3:  Relative values of twisting moments  
 





2t

t
xM

0M . 

(x2/a) [12] [1] [14] ξ=0.5 ξ =0.67 ξ =0.75 
1.00 0.000 0.000 0.035 0.000 0.000 0.000 
0.75 0.485 0.485 0.469 0.487 0.486 0.484 
0.50 0.785 0.785 0.809 0.786 0.786 0.785 
0.25 0.948 0.948 0.938 0.949 0.948 0.948 
0.00 1.000 1.000 1.018 1.000 1.000 1.000 

5 Conclusions 

The use of the tangential differential operator in traction BIE for plate bending 
models considering the shear deformation effect allowed the order reduction of 
the singularities without reducing the accuracy of the boundary element method. 
The use of fundamental solutions having singularity at the source point is the 
main request to apply the TDO with the integration by parts. The results have 
agreed with those obtained in [12, 1 and 14]. Thus, the same efficiency shown 
for two dimensional problems of the linear fracture mechanics in [6] and for 
three dimensional elasticity problems in [7] was also shown for plate bending 
models including the shear deformation effect. Furthermore, the use of 
derivatives of the adopted shape function for displacement without using other 
interpolation for TDO was an interesting alternative without reducing the 
expected precision. The next step will be the study of fracture problems in plate 
bending using the DBEM with the TDO. 
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