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Abstract 

Fatigue and crack propagation are phenomena affected by high uncertainties, 
where deterministic methods fail to predict accurately the structural life. This 
paper aims at coupling reliability analysis with boundary element method (BEM) 
in modeling probabilistic fatigue crack growth. BEM has been recognized as an 
accurate and efficient numerical technique in modeling crack growth problems. 
The dual BEM approach was adopted to model crack growth. The couple BEM 
and reliability algorithms allows us to consider uncertainties during the crack 
propagation process. In addition, it calculates the probability of fatigue failure 
for complex structural geometry and loading. Two coupling procedures are 
considered: direct coupling of reliability and mechanical solver and indirect 
coupling by the response surface method. Numerical applications show the 
performance of the proposed models in lifetime assessment under uncertainties, 
where the direct method has shown faster convergence than response surface 
method. 
Keywords: fatigue crack growth, BEM, structural reliability. 

1 Introduction 

Fatigue and crack propagation problems have been widely studied by the 
scientific community in recent years, because crack growth can explain the 
failure of structures. The accurate modelling of complex engineering structures, 
including complex geometries and boundary conditions, requires numerical 
techniques. Therefore, to model crack propagation problems, numerical models 
are required because the structural geometry and, consequently, the boundary 
conditions in these problems change at each crack length increment. 
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     Particularly, the boundary element method (BEM) has already been 
recognized as an accurate and efficient numerical technique to deal properly with 
many problems in engineering, especially crack growth problems. Compared to 
finite element and other domain mesh methods, BEM is recommended to 
analyze crack propagation problems due to its efficiency of dimensionality 
reduction, as only the boundary is discretized. The BEM is even more efficient 
for mixed mode propagation, as the remeshing problems are avoided, whatever 
the structural complexity. For these reasons, BEM has been widely applied to 
deal with fatigue and crack propagation problems [1–4].  
     Fatigue crack growth is a slow process that includes large uncertainties and 
requires appropriate inspection plan in order to prevent the risk of failure. The 
fatigue crack growth is governed by several parameters as structural geometry, 
initial crack size and configuration, material properties and loading history. All 
these conditions are random and appropriate analysis method is required on the 
basis of probabilistic models. An appropriate analysis of fatigue phenomena is 
performed by considering the problem in a probabilistic manner. Numerous 
studies have been carried out on probability-based fatigue assessment as [5–8]. 
Although these works, and many others [9–11], have developed probability-
based fatigue assessment approaches and applications, the model assumptions 
are often very restrictive, leading to inappropriate application to practical 
engineering structures.  
     This paper aims at developing a general procedure allowing to deal efficiently 
random fatigue crack growth for complex structures. This goal is achieved by 
coupling a reliability model with the mechanical model based on BEM, which 
one simulates accurately fatigue and arbitrary crack propagation. The BEM 
model is based on the dual BEM formulation in which singular (displacement 
integral equation) and hyper-singular (traction integral equation) integral 
equations are adopted. Displacement integral equations are used for collocation 
points along the crack surface, whereas traction integral equations are used for 
collocation points along the opposing crack surface. This technique avoids 
singularities in the resulting algebraic system of equations, despite the fact that 
two of the collocation points defined on the opposite crack surfaces have the 
same coordinates. 
     Two reliability procedures are considered: the direct method (DM) based on 
implicit limit state function and the response surface method (RSM) based on 
polynomial approximation of the mechanical behavior. The DM is based on the 
direct application of first order reliability method (FORM), where the derivatives 
of the mechanical response are calculated by finite difference technique applied 
to BEM model. In the RSM, the implicit mechanical response, given by BEM, is 
approximated by a polynomial function, known as response surface. In this 
approach, the implicit mechanical response is converted into an explicit one. The 
reliability procedure is then applied to this response surface instead of the BEM 
itself. Finally, the failure probability regarding fatigue can be defined and the 
most probable crack path determined.  
     The developed procedures are applied to random fatigue problems, where the 
DM has shown to give faster convergence, with respect to RSM. 
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2 BEM formulation 

The BEM has shown to be an attractive approach in various engineering fields, 
such as contact problems, fatigue and fracture mechanics, due to its precision and 
robustness in modelling structures with high stress concentration. In two-
dimensional elasticity, the boundary element formulation is obtained considering 
a homogeneous domain , with a boundary . The equilibrium equation can be 
written in terms of displacements as: 
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where  is the shear modulus,   is Poisson’s ratio, ui are the displacement 
components and bi are the body forces. In this equation i=1,2 because it is 2D 
case. Using Betti’s theorem, the singular integral for displacements is given, 
without body forces, by: 

 * *( , ) ( ) ( , ) ( ) ( ) ( , )il l il l l ilc f c u f P f c u c d P c u f c d
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where Pl and ul are respectively the tractions and displacements at the boundary, 

 is the integral of Cauchy principal value and the term cil is equal to il/2 for 

smooth contours. * *
il ilP and u are respectively the fundamental solutions, which 

ones are shown in  [12]. 
     Linear elastic two dimensional domains can be analyzed by evaluating Eqn. 
(2) on the elements located at the body’s boundary. However, for solids with 
cracks, using this equation for the discretization of all boundaries leads to 
singularities, because both crack surfaces are located on the same geometrical 
position. To deal with crack problems using BEM, many formulations have been 
proposed. The dual boundary element formulation stands out, as it applies to 
analysis of arbitrary crack growth. In this formulation, four algebraic 
relationships are required at each node along the crack path. To avoid redundant 
relationships, these four relationships are obtained from two different integral 
equations, which are written in terms of displacements, Eqn. (2), and tractions.  
     The hyper-singular integral representation at the boundary, in terms of 
tractions, can be obtained from Eqn. (2), which must be differentiated to obtain 
the integral representation in terms of strains. Then, Hooke’s law is applied to 
obtain the integral representation in terms of stress. Finally, multiplication by the 
director cosines of the normal to crack surfaces at the collocation point leads to 
the traction representation, as follow: 
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where  is the integral of Hadamard finite part, the terms Skj and Dkj contain 

the derivatives of Pij
* and uij

*  respectively, as indicated in [12]. In this paper, 
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only linear boundary elements were used. High order elements could be used. 
However, this simple boundary element allow us calculate accurately the 
boundary values with low computational memory requirements. The singular 
integrals are evaluated in numerical forms, using sub-element procedure, 
whereas the hyper-singular integrals are calculated by analytical expressions. 
This procedure has shown to be accurate and efficient enough in arbitrary crack 
growth analyses. 

3 Fracture mechanics model 

The fatigue life prediction is a challenging problem in engineering design, 
inspection and maintenance. It is highly important to give accurate estimation of 
the life distribution of mechanical and structural components, in terms of the 
number of load cycles. For various kinds of materials, the crack growth rate can 
be modeled using the Paris’ law [13]: 

 nda
C K

dN
   (4) 

where  a is the crack length, N is the number of loading cycles, C and n are 
material constants, and K is the stress intensity factor range.  
     Stress intensity factors depend on the crack and structural geometry as well as 
on the stress field at the crack tip. For complex structures, these parameters can 
only be properly calculated by numerical methods. In this paper, stress intensity 
factors are evaluated through the displacement correlation technique using BEM 
model. For plane structures, stress intensity factors for modes I (opening) and II 
(sliding) are given throughout the following expressions: 
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where IK  and IIK  are respectively stress intensity factors for modes I and II, 

uo is the crack opening displacement, us is the crack sliding displacement, r is the 
distance between the crack tip and the computation point (i.e. mesh node) and   

and   are material properties. These variables are evaluated for six couples of 
mesh nodes near to the crack tip. Then, stress intensity factors at the crack tip are 
obtained by a local extrapolation process. This process has shown accurate 
according our results. 
     In mixed mode propagation, it is necessary to calculate the equivalent stress 

intensity factor ,K  and the crack propagation (or bifurcation) angle p . For this 

purpose, the maximum circumferential stress criterion is adopted, which yields: 
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     For each load cycle, the equivalent stress intensity factor is evaluated at the 
minimum and maximum load levels, namely minK and maxK respectively. If the 

equivalent stress intensity factor value is bigger than the material toughness, 
brittle failure is considered and the analysis is stopped; in this case, we talk about 
failure. When IcKK max , the stress intensity factor range K is computed and 

compared to the threshold thK . If thKK  , no crack propagation is 

considered. Otherwise, the crack growth rate is computed using the Paris’ law. 
The fatigue failure is defined by large crack propagation. As recommended by 
[14], when the crack growth rate da dN  is bigger than 0.1 mm/cycle, the 

analysis is stopped and structural failure takes place (the remaining life is 
negligible). 

4 Reliability analysis 

The reliability analysis aims at computing the failure probability Pf regarding a 
specific failure scenario, known as the limit state (note that reliability and failure 
probability are complementary).  
     The leading step in the reliability assessment is to identify the basic set of 

random variables  1 2, ,...,
T

nX x x x for which uncertainties have to be 

considered. For all these variables, probability distributions are attributed to 
model randomness. These probability distributions can be defined by physical 
observations, statistical studies, laboratory analysis and expert opinion. The 
number of random variables is an important parameter to determine the 
computing time consumed during the reliability analysis. In order to reduce the 
size of the random variable space, it is strongly recommended to consider as 
deterministic all variables whose uncertainties lead to minor effects on the value 
of the failure probability. 
     The second step consists in defining a number of potentially critical failure 
modes. For each of them, a limit state function G(X) separates the space into two 
regions: the safe domain, where G(X)>0, and the failure domain where G(X)<0. 
The boundary between these two domains is defined by G(X)=0, known as the 
limit state itself.  It is worth to mention that an explicit expression of the limit 
state function is not possible, and only desired points can be computed by 
running the BEM analysis. 
     The failure probability is evaluated by the integral, [15]: 

  1 2 1 2
0

, , , , ,f X n n
G

P f x x x dx dx dx


     (9) 
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where  1 2, , ,X nf x x x  is the joint density function of the variables X. As the 

evaluation of the above integration is impossible in practice, alternative 
procedures have been developed on the basis of the concept of reliability index 
 [16]. This variable is defined by the distance between the median point and the 
failure domain in the normalized space of random variables. The reliability index 
allows us to compute the failure probability, using the first order reliability 
method (FORM), as:  fP , where    is the standard Gaussian 

cumulated distribution function. 
     When numerical mechanical methods are involved, the structural reliability 
analysis can be performed by one of two approaches: direct application of the 
reliability procedure using the mechanical analysis tool, or the use of the 
response surface method as an explicit representation of the structural behavior, 
in order to perform the reliability analysis. These two approaches will be 
discussed below. 

5 Coupled BEM-reliability procedures 

In order to consider random fatigue crack propagation, it is required to couple the 
reliability procedures with the BEM model. As mentioned above, this coupling 
can be performed by either the direct method or the response surface method. 

5.1 Direct method (DM) 

The basic procedure consists in directly coupling the reliability model with the 
mechanical model. As described in the previous section, the limit state function 
defines the safety and failure domains. For fatigue crack growth, this limit state 
function can be written in terms of number of load cycles: 

      Resistant AppliedG X N X N X   (10) 

where NResistant(X) is the number of cycles corresponding to structural failure 
and NApplied(X) is the applied number of cycles during the service life. In order 
to give invariance measure of safety, the random variables, defined in the 
physical space, are transformed into independent standard Gaussian variables 
[16], by using appropriate probabilistic transformation. Figure 1 illustrates this 
transformation showing that the performance function G(X) in the physical space 
is transformed to H(U) in the standard normalized space, where 

 1 2, ,...,
T

nU u u u denote the standard Gaussian variables.  

     In this standard space, the reliability index  is given by the minimum 
distance between the failure domain and the origin of the standard space, 
therefore evaluated by solving the constrained optimization problem: 

 

*find: 

which minimizes: 

subject to: H( ) 0

T

U

U U

U

  


 (11) 
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     The solution of this problem converges to the failure point nearest to the 
space origin, known as the design point or the most probable failure point X*. In 
the standard space, the distance between this point and the origin is the reliability 
index. The reliability index  can be found by applying the Rackwitz and 
Fiessler algorithm [17], directly to the mechanical model. As the number of 
cycles to failure is known point-by-point, the resistance NResistant(X) is 
implicit, and therefore the derivatives of the limit state function can only be 
computed by the finite difference technique. In our case, the forward finite 
difference scheme was chosen because of its low computation cost. The 
numerical error due to finite difference may affect the convergence of the 
coupled procedure, as well as the precision of the solution, especially for 
nonlinear phenomena. However, for the problems studied in this paper, it was 
verified that this coupling procedure gives accurate results and stable 
convergence rate, with a reasonable number of mechanical analyses.  
 

 

Figure 1: Probabilistic transformation from physical to standard space. 

5.2 Response surface method (RSM) 

The response surface method (RSM) is an efficient method for solving 
optimization problems, such one presented in Eqn. (11). The RSM allows us to 
replace complex models by approximate analytical functions based on the 
response values at various points in the design space. For reliability applications, 
the RSM is used to approximate the structural response at the vicinity of the 
most probable failure point, in terms of input variables related to geometrical 
data, material properties and boundary conditions. Naturally, the variables to be 
considered are those undergoing randomness within the reliability analysis. The 
set of realizations of these variables is named as experiment design (ED), which 
defines a set of structural responses from which a surface may be fitted using 
least square regression. Any shape surface, named response surface, can be 
adopted to represent the structural response. In this paper, the complete quadratic 
polynomial, defined in n-dimensional space, has been chosen to approximate the 
structural response.  
     The general procedure for evaluating the failure probability using response 
surface methods is divided into three steps: 
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1. In the first step, different sets of points are chosen according to the 
experiment design procedure. Each set constitutes the input values for which the 
mechanical response has to be computed. For the problem considered in this 
paper, the BEM model is performed to compute the mixed mode crack growth 
and the resisting number of load cycles corresponding to structural failure, for 
each set. During the iterative procedure, the points to be used in the ED are given 
in a hyper-cube centered at the current search point. The hyper-cube dimensions 
are given as a multiple of the variables standard-deviations. The mean values of 
the random variables are usually assumed as the first trial of the search point. 
After computing the mechanical responses for the selected points, the response 
surface can be approximated by polynomials identified by regression techniques. 

2. The second step is defined by rewriting the limit state function in the 
standard normalized space using probabilistic transformations. Then, the 
minimum distance between the limit state function and the coordinate origin is 
calculated using an appropriate optimization procedure. This distance is the 
reliability index, , as defined by Hasofer and Lind [16], and the design point as 
well as the direction cosines can be defined. 

3. The third step is the estimation of the failure probability, which can be 
computed according to FORM approximation.  
     The procedure is iterative and it is continued by re-defining the ED at each 
new design point calculated. The center of the ED in the iteration k is the design 
point calculated in the iteration k-1. The convergence is given by the error 
measured between the reliability indexes of two successive iterations, in addition 
to the convergence of the design point coordinates.  
     In this procedure, the polynomial coefficients, a, are calculated by 
minimizing the quadratic error,  , between the exact responses, given by the 

BEM number of load cycles at failure  Resistant kN w  at each ED point kw , and 

the approximate response surface  kRS w evaluated at the same points. The 

polynomial coefficients are obtained by minimizing: 
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     It is to be noted that each numerical experiment to be used in the ED is 
obtained by complete fatigue crack growth analysis, in order to define the 
corresponding number of cycles. Therefore, each mechanical call represents a 
significant computing cost and experiments should be optimally designed, in 
order to reduce the numerical effort. In our case, the response surface represents 
a local approximation of the structural lifetime and is computed by: 

      AppliedG X RS X N X   (13) 

     Using the response surface, the design point search can be carried out by 
Rackwitz and Fiessler algorithm [17] which gives good results in this situation. 
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     Beside its accuracy, the RSM is known to be robust for reliability analysis of 
complex structural systems, especially when high nonlinearities and bifurcations 
are involved. However, from the numerical point of view, this method becomes 
expensive when the number of random variables increases. For this reason, 
various experiment design schemes have been developed to reduce the number 
of the required points. 

6 Application 

A perforated panel is fixed at the bottom and subjected to uniform and cyclic 
tensile load at the top edge. An initial crack is located as shown in Fig. 2. The 
random variables considered in this analysis are the tensile load P, the hole 
diameter D, the location of the hole center with respect to the panel bottom, fD , 

and the applied number of cycles appliedN (see Table 1).  
 

 

 

Figure 2: Perforated plate with initial crack. (dimensions in meter). 

Table 1:  Deterministic and random variables for this example. 

Variable Distribution Mean Standard 
Deviation 

Young’s modulus E (MPa) deterministic 30 000  
Poisson’s ratio v deterministic 0.20  

Paris’coefficientC (m1-1.5n/cycle/kNn) deterministic 2.0 x 10-10  
Paris’ Law parameter n deterministic 2.7  
Toughness Kc (MN/m1.5) deterministic 104  

Hole diameter D (m) normal 0.4 0.025 
Hole location Df (m) normal 1.5 0.15 

Applied load P(kN/m) normal 5.00 0.80 
Applied cycles Load

CyclesN (cycles) normal 5 x 106 105 
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     The RSM, with various experiments design, and DM were applied to analyze 
this structure considering the four random variables described in Table 1. The 
convergence curves for two representative random variables, number of load 
cycles and reliability index, are shown in Fig. 3. Regarding these results, we 
observe that the convergence is achieved, for DM and RSM progressive resizing, 
with maximum 12 iterations, while the RSM stepped resizing needs not less than 
21 iterations to the convergence.  In this example, the DM has shown faster 
convergence than RSM approaches. The reliability index obtained is 1.912 that 
corresponds to a failure probability of 0.0279. 
 

 

Figure 3: Convergence history for load cycles and reliability index. 

     In spite of DM and RSM with progressive resizing needed maximum 12 
iterations to the convergence, the computing time associated is considerable 
different. Figure 4 shows the number of BEM runs for different reliability 
methods used. Concerning RSM analysis, the maximum and minimum BEM 
runs were observed when 13 Points and Minimum ED were adopted, 
respectively. Using the first one, it required 728 BEM runs, while with Minimum 
ED only 120 mechanical runs were demanded. Considering DM only 40 
mechanical calls were required to achieve the convergence. Thus, the good 
performance of DM is confirmed, as it requires a low number of BEM runs when 
compared with RSM procedures. 
 
 

 

Figure 4: Number of BEM calls for the reliability analysis. 
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     The crack growth path changes according the vertical position of hole, Df . If 
the center hole position is aligned, or almost aligned, to the initial crack position, 
the crack grows up to the hole. However, below a certain position, the hole 
changes the stress field distribution in the structures as well as the crack growth 
path. 
     To better understand the role of the hole position, a parametric analysis has 
been performed by varying the mean hole position Df from 1.00 m to 2.50 m (the 
other random and deterministic variables remains the same as described in 
Table 1. The reliability index and the most probable crack paths are shown 
in Fig. 5. We observe high sensitivity and dependence between reliability index 
and hole position. It can be seen that the minimum reliability index is achieved 
when the mean location is equal to 1.75 m. In this position, the reliability index 
calculated is 1.52.  
 

 

Figure 5: Influence of the hole position on the reliability index. 

7 Conclusions 

In this paper, a couple reliability and BEM model has been proposed for analysis 
of mixed mode crack propagation in structures subjected to fatigue. The BEM is 
an accurate approach to model random crack growth, especially in the 
framework of reliability analysis where many mechanical model runs are 
required. The DM and RSM have been applied to solve the reliability problem. 
The numerical application has shown good agreement between these two 
approaches. However, DM has demonstrated to be stable and more efficient than 
RSM.  
     The coupled model proposed is an interesting tool for probabilistic fatigue life 
assessment. Based on the reliability index results, inspections and maintenance 
plans can be developed and its costs, as well as the failure cost, can be 
considerably reduced. 
     Extension of the BEM code to consider multi materials and heterogeneities 
can be done in the future. In this case, structural systems can be simulated and a 
structural system reliability index can be achieved.  
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