
Object-oriented C++ boundary element
solution of the vector Laplace equation

J. A. Ingber
Accurate Solutions in Applied Physics, USA

Abstract

The Boundary Element Method (BEM) lends itself well to an object-oriented
implementation. Well-defined class hierarchies can reduce the size of a problem
solution while improving the readability and maintainability of the solution. The
BEM uses geometric elements, defined as collections of nodes, to model a surface.
Boundary conditions, specified by the problem, are defined at each node. This
suggests an object oriented solution that defines a base Element class that can
be extended to define triangular elements and quadrilateral elements, and a base
Node class that can be extended to define more specialized nodes, such as edge
and corner nodes. Historically, BEM codes have been written in FORTRAN 90
and object oriented codes have been deemed too slow for such computationally
intensive solutions. In this paper I will discuss the development and optimization
of an object-oriented BEM code, written in C++, for solving the vector Laplace
equation for the magnetic vector potential in three dimensions. The solution to the
3-D magnetic field problem was first written and tested in FORTRAN 90. Due
to the complexity and size of the problem solution, the translation to C++ went
through several stages. At each stage the code was tested for accuracy and speed.
After optimization of the C++ code, which included optimization of memory
allocation, optimization of class structures, optimization of functions required to
build the discretized linear system of equations and optimization of the solver, the
C++ code executed faster than the FORTRAN 90 code for all test problems.

Keywords: boundary element method, object-oriented, C++, vector Laplace
equation, magnetic vector potential, class hierarchies, node, element, off
functional collocation nodes.

Boundary Elements and Other Mesh Reduction Methods XXXII 295

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

doi:10.2495/BE10 1026

1 Introduction

The Boundary Element Method (BEM) lends itself well to an object-oriented
implementation. Well-defined class hierarchies can reduce the size of a
problem solution while improving readability, extensibility and maintainability
of the solution. Object-oriented programming languages have advantages
over procedural programming languages, such as FORTRAN 90. Procedural
programming languages rely on the use of top level subroutines and functions
that are passed data, or rely on global data modules. This results in procedures that
are tightly coupled, meaning that changes to the data, or changes to a procedure
will effect other procedures, and global data facilitates the propagation of errors.
Object-oriented programming languages support the definition of classes and class
hierarchies. A well designed class defines private or protected data members
(properties), and public methods (operations) that perform computations and
support the protected data. As long as the public interface is supported, changes to
the data within one class will not effect other classes. Thus, the resulting solution
is more robust and extensible, and classes are reusable. However, the overhead
associated with instantiating classes and referencing public methods can result in
solutions that execute more slowly than traditional FORTRAN codes.

Historically, BEM codes have been written in FORTRAN to solve a
variety of problems including potential problems [9], vorticity formulations [3],
and the magnetic field integral equation [4]. More recently, object-oriented
implementations of the BEM has been discussed in the literature as a means for
writing solutions that are easier to read and maintain. Many of these solutions
have chosen to implement a Matrix class [7, 9]. Although this is a reasonable
approach, and it can be argued that this is the ”pure” object-oriented approach,
this approach can reduce the execution speed of the solution by one or two
orders of magnitude [5]. Performance of object-oriented C++ BEM solutions is not
widely discussed in the literature, but a well designed C++ solution can actually
outperform FORTRAN solutions if care is take with the design of classes, and
memory allocation is managed effectively. This is illustrated with the solution of
the vector Laplace equation for the magnetic vector potential in three dimensions.
The solution to this problem was originally written in FORTRAN. The code was
ported to C++ to improve maintenance and extensibility. The C++ code was then
optimized resulting in a solution that runs faster than the original FORTRAN
solution.

2 Problem formulation

The governing vector Laplace equation can be transformed into a boundary
integral equation using standard techniques [6, 1]. The magnetic vector potential
can be represented by the following boundary integral equation

η(�x)A(�x) = −
∫

Γ

[�n(�y) ·A(�y)]∇G(�x, �y)dΓ −
∫
Γ

[�n(�y) × A(�y)] ×

296 Boundary Elements and Other Mesh Reduction Methods XXXII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

∇G(�x, �y)dΓ −
∫

Γ

[�n(�y) × B(�y)]G(�x, �y)dΓ, (1)

where A is the magnetic vector potential, B is the magnetic flux density, �n is the
normal to the boundary Γ at the source point �y andG is the Green’s function given
byG = 1/ | �x−�y |. The coefficient term η is a function of the local geometry at the
field point �x, but can be determined using standard techniques such as assuming a
constant vector potential and integrating over the surface of the domain.

In the current formulation, the boundary element discretization consists of
biquadratic, isoparametric quadrilateral elements and quadratic, isoparametric
triangular elements. After discretization, the linear system of boundary element
equations can be written as

[Gij]{Aj} = [Hij]{Bj}, (2)

where Aj and Bj represent the components of A and B, respectively in Cartesian
coordinates.

It has not been widely discussed in the literature, but the solution of the BIE
is almost always ill-posed in Cartesian coordinates because of the boundary
conditions. In particular, after imposing the boundary conditions, the resulting
coefficient matrix will be singular in all cases except for the exterior Neumann
problem in which B is specified everywhere on the boundary. To remove the
singularity, the discretized BIE (Eq. 2) must be transformed to a local tangential-
normal coordinate system, and at collocation nodes along the boundary where
Dirichlet conditions are specified, the normal component equation must be
discarded.

3 Structure of the FORTRAN solution

The BEM FORTRAN 90 code is comprised of 2 data modules, a main program,
and 18 subroutines, including the ones listed below.

matvec(): assembles the discretized linear system of
equations

rqint(): performs integral evaluations over
quadrilateral elements

sqint(): performs integral evaluations over
quadrilateral elements with singularities

rtint(): performs integral evaluations over
triangular elements

stint(): performs integral evaluations over
triangular elements with singularities

decomp(): performs an LU decomposition of the linear
system

solve(): determines the solution of the linear system

Boundary Elements and Other Mesh Reduction Methods XXXII 297

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

Table 1: Time required to execute F90 solution.

Number of Equations Assemble Matrix Assemble and Solve

250 0.11 s 0.15 s

2040 3.05 s 18.91 s

3040 3.75 s 55.19 s

The LU decomposition of the linear system dominates the execution speed of
the solution requiring O(n3) operation count, where n is the number of linear
equations in the discretized linear system. This subroutine has been optimized
for the FORTRAN programming language. The assembly of the linear system,
performed in the matvec() subroutine, requires O(n2) operation count. Table 1
lists execution times for the FORTAN code.

The assembly of the discretized linear system of equations requires nested
loops. The outer loop ranges over the boundary element collocations nodes. If
the boundary condition at the node is Dirichlet (A is specified), then two equations
are generated in the tangential directions. If the boundary condition at the node
is Neumann (B is specified), then three equations are generated in the Cartesian
directions. The inner loop ranges over the boundary elements. Each element is
composed of a set of local nodes and boundary conditions. A singularity occurs
when the collocation node is the same as one of the local nodes within the element.
Thus, selection is required within the inner loop to determine which integral
evaluation subroutine to call. Because of the ambiguity in the normal direction
at an edge or corner, the boundary element representation is double-noded along
edges and multi-noded at corners. Thus, the matvec() subroutine calculates the
distance between the collocation node and each of the local nodes within each
element to determine if a singularity exists. The object-oriented C++ solution
for this problem is effective in reducing the size and complexity, and improving
readability and extensibility, of the matvec() subroutine.

4 Structure of the object-oriented C++ solution

The boundary element discretization consists of isoparametric quadrilateral and
triangular elements, each defined by a set of nodes and boundary conditions. The
C++ solution defines a Node class hierarchy and an Element class hierarchy, as
well as an Assembly class, a quadrature information (QuadInfo) class and a class
that solves the discretized linear system of equations (LUDecomp). The class
diagrams are given in Figure 1.

298 Boundary Elements and Other Mesh Reduction Methods XXXII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

Figure 1: Class hierarchies.

An Element object has a set of nodes, and implements two integration functions.
Thus, every Element object has immediate access to the data and functions
required for correct mapping to the master element, and correct calculations of
the integral evaluations. The Element class hierarchy simplifies the logic of the
assembly routine through the use of virtual methods. The operations of the base
Element class include two pure virtual methods that must be implemented by all
subclasses as shown below:

virtual void regularIntegration(Node* collocationNode,
const QuadInfo& qi) = 0;

virtual void singularIntegration(Node* collocationNode,
const QuadInfo& qi,
int singularNode) = 0;

During assembly of the discretized linear system, an element calls
the appropriate integration routine and dynamic binding determines the
implementation (triangular or quadrilateral). Integration routines require access
to Gauss points and Gauss weights for accurate computation. This information
is constant, and specific to the boundary integral equation. Gauss points and
Gauss weights are calculated in the QuadInfo class. A single instance of the
QuadInfo class is instantiated in the Assembly class and passed by reference to the
integration routines. The integration routines reference only the public interface of
the QuadInfo class, thus the QuadInfo class is not tightly coupled with the Element
classes. A Node object has a type, a set of boundary conditions, and data members

Boundary Elements and Other Mesh Reduction Methods XXXII 299

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

for the accumulation of integral evaluations. The properties of the base Node class
are as shown below:

char nodeType;
double x,y,z; //geometric/functional node values
double cX, cY,cZ; //collocation node values
double integrationResultA[3][3],

integrationResultB[3][3];
double uVect[3], vVect[3], nVect[3];
double boundaryConditions[3];
int rcIndex; //position in DLS
int globalNodeNumber;

The operations of the base Node class include necessary accessor and mutator
methods to support the class properties as well as the following method:

int isSingular(Element e) const;

The isSingular() routine returns the node number of the singularity, if a
singularity exists for the given element, and returns zero if no singularity exits
in the given element.

The EdgeNode class has one additional property as shown below:

std::map<int> multiNodeNumbers;

The EdgeNode class overrides the isSingular() method, and references
multiNodeNumbers to determine if a singularity exits in the given element. This
greatly simplifies the logic and time required to determine if a singularity exists,
as distances do not need to be calculated during execution of the solution.

When edge and corner nodes have Dirichlet boundary conditions for at least 2
duplicate nodes, off functional node collocation is required to avoid singularities
in the discretized linear system of equations [4]. The DirichletEdgeNode class has
one additional property:

char side; //The edge side of element

The singular integration routines can reference the side property of a
DirichletEdgeNode to modify the collocation nodes within the element to maintain
a well-posed problem. Note, Dirichlet edge node detection is not implemented in
the F90 solution. However, with the use of objects, the extension of the Node class
to handle this special case is rather straight forward.

The Assembly class is responsible for the input of the problem data and
construction of the global node and element arrays, calculation of the normal and
tangential vectors to the boundary at each boundary element node, and assembly
of the discretized linear system of equations. The main properties and operations
of the Assembly class are shown below:

//Dynamic Global Node Array
//Each element in the Node* array holds the address

300 Boundary Elements and Other Mesh Reduction Methods XXXII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

of a node
Node** globalNodes;

//Dynamic array
//Each element in Element* array holds address
of an element
Element** elements;

//Define the Quadrature data
QuadInfo qi;

//Define the geometry
void inputGeom();

//Calculate vectors
void calcVec();

//Build discretized linear system
void assembleMatVec(double[] bVector,

double[] aMatrix);

Arrays of pointers are used for memory efficiency and to support dynamic
binding through virtual methods. Dynamically allocated arrays are used for speed
and efficient use of memory. The coefficient matrix for the discretized linear
system is defined as follows:

//allocate and initialize aMatrix
double *aMatrix =

(double*)calloc(numEquations*numEquations,
sizeof(double));

The C routine, calloc(), has an advantage over the C++ operator new in that
calloc() initializes the allocated memory space to zero at a time that is most
efficient. When referencing the aMatrix, simple arithmetic is used for correct
mapping into a two-dimensional array, or matrix, as illustrated in the following
assignment statement:

aMat[row*neq + col] += tempVecs[0][0];

The LUDecomp class implements Crout’s algorithm, optimized for C++. This is
an outstanding algorithm and the LU decomposition routine requires about 1/3N3

executions [8]. Table 2 lists execution times for the optimized C++ code.

Boundary Elements and Other Mesh Reduction Methods XXXII 301

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

Table 2: Time required to execute C++ solution.

Number of Equations Assemble Matrix Assemble and Solve

250 0.09 s 0.14 s

2040 2.95 s 18.07 s

3040 5.02 s 54.26 s

5 Discussion

The initial motivation for porting the FORTRAN 90 solution to C++ was to
improve the readability, extensibility and reusability of the solution for commercial
purposes. Improving the execution speed was not anticipated in the beginning,
although every effort was made to make the code as efficient as possible. The C++
solution went through several iterations. The first iteration of the C++ code was
nearly two orders of magnitude slower than the FORTRAN 90 code. The poor
performance, was the motivation to begin optimization of the C++ code. Many
modifications were made, but a few of the changes were quite significant.

Initially, the data type long double was used instead of double, and the Gauss
points and Gauss weights were properties of the Element class since this data
is required to perform the integral evaluations. Defining the Gauss points and
Gauss weights in the base Element class slowed performance due to the fact that
these values were generated every time an element was instantiated. (Unlike Java,
C++ does not support initialization of static data members within a constructor.)
Creating a quadrature class and instantiating a single object that was passed, by
reference, to the integration routine resulted in a small yet significant increase in
performance. Changing the data type from long double to double reduced the
execution time by close to eighty percent, and the accuracy of the results did
not change within the seven significant digits that were printed. Implementing
Crout’s algorithm for solving the linear system of equations reduced the execution
speed by nearly fifty percent. Finally, eliminating the need to calculate distances
between collocation nodes and local nodes to check for singularities, as discussed
in section 4, improved performance of the solution.

Acknowledgements

This work was funded by the Air Force Research Laboratory under Small Business
Innovation Research (SBIR) contract number FA945-08-M-0084. The starting
point for this work was initiated by a graduate student, Paula Higgins, at the
University of New Mexico for a Master’s Thesis [2].

302 Boundary Elements and Other Mesh Reduction Methods XXXII

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

References

[1] Z. Fang and M.S. Ingber. The Solution of Magnetostatic BEM System of
Equations Using Iterative Methods. Engineering Analysis with Baoundary
Elements, 26:789–794, 2002.

[2] P. Higgins. Boundary Element Method Solution of Laplace’s Equation for the
Magnetic Vector Potenial. Master’s thesis, University of New Mexico, 2003.

[3] M. S. Ingber and S. N. Kempka. A Galerkin implementation of the
generalized Helmholtz decomposition for vorticity formulations. J. Comp.
Phys., 169:215–237, 2001.

[4] M.S. Ingber and R.H. Ott. An Application of the Boundary Element Method
to the Magnetic Field Integral Equation. IEEE Transactions on Antennas and
Propagation, 39:606–611, 1991.

[5] I. A. Jones, P. Wang, A.A. Becker, D. Chen, and T.H. Hyde. Efficient object-
oriented implementation of boundary element software. In Proceeding of the
Eighth International Conference on the Application of Artificial Intelligence
to Civil and Structural Engineering Computing, Stirling, Scotland, 2001.

[6] L. Li. Boundary Element Method for Three-Dimensional Magnetostatic Fields
in Terms of Vector Variables. Acta Polytech. Scan. Elec. Engr. Ser., 61:1–58,
1998.

[7] R.J. Marczak. An object-oriented framework for boundary integral equation
methods. Computers and Structures, 82:1237–1257, 2004.

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes The Art of Scientific Computing. Cambridge University Press, 32
Avenue of the Americas, NY,NY 10013-273, USA, 2007.

[9] H. Qiao. Object-oriented programming for the boaundary element method in
two-dimensional heat transfer analysis. Advances in Engineering Software,
37:789–259, 2005.

Boundary Elements and Other Mesh Reduction Methods XXXII 303

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

