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Abstract

A volume integral equation method for the analysis of scattered elastic waves
in a half space is presented. This method introduces the generalized Fourier and
its inverse transforms during the Krylov subspace iterative method for obtaining
the solutions. The derivation of the coefficient matrix for the integral equation is
not required. Furthermore, the introduction of the fast method for the generalized
Fourier transform enables us to reduce the large amount of the CPU time, which
was observed in the previous article. Numerical calculations are carried out to
examine the effects of the fluctuations of the wave field due to the Lamé constants
as well as the mass density on scattered waves. The numerical results are also
compared with the results of the Born approximation to check the accuracy of the
present method.
Keywords: analysis of scattered waves, elastic half space, volume integral
equation, generalized Fourier transform, Krylov subspace iterative method.

1 Introduction

A type of the volume integral equation known as the Lippmann-Schwinger
equation has been an efficient tool for theoretical investigation for the analysis
of scattered waves in fields of the quantum mechanics [2] and acoustics [3]. The
application of the volume integral equation to numerical analyses, however, is not
very easy due to a requirement of a huge scale and dense matrix as a result of
the discretization of the equation. Nevertheless, a number of applications of the
volume integral equation to scattering problems are increasing. The application
fields are extended to elastic wave as well as electro-magnetic wave propagations
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(for example [4, 5]), in which methods to overcome the deficiency of the volume
integral equation are formulated.

Previously, the first author of this article also showed a method for the volume
integral equation for elastic wave propagation in a half space [1]. In the article, the
generalized Fourier transform was developed for the wave field, which was applied
to the Krylov subspace iterative method [6] to obtain the solution of the integral
equation. The method was free from the derivation of a coefficient matrix for the
integral equation, which consumed a vast amount of memory. A large amount of
CPU time, however, was still observed for the analysis based on the proposed
method [1]. Under the circumstances a method to resolve the requirement of a
large CPU time has to be established.

In this article, a method to reduce the CPU time is presented. In addition, several
numerical examples are also presented to investigate the reduction of the CPU time
and properties of scattered waves due to the fluctuations of wave field by the Lamé
constants as well as the mass density.

2 Method for scattering analysis

2.1 Volume integral equation

Consider a scattering problem shown in Fig. 1, in which a point source is applied
to the free surface and scattered waves are caused due to the interaction between an
incident wave and fluctuations of the wave field. A Cartesian coordinate system is
employed to describe the wave field. For example, the spatial point is expressed as

x = (x1, x2, x3) ∈ R
3
+ (1)

where x3 is the vertical coordinate with the positive direction downward. The free
surface boundary is denoted by x3 = 0. The fluctuations of the wave field are
expressed by Lamé constants and the mass density such that

λ(x) = λ0 + λ̃(x) (2)

μ(x) = μ0 + μ̃(x) (3)

Figure 1: Concept of the analyzed model.
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ρ(x) = ρ0 + ρ̃(x), (x ∈ R
3
+) (4)

where λ0, μ0 and ρ0 are the background Lamé constants and λ̃, μ̃ and ρ̃ are their
fluctuations.

The governing equations and the boundary conditions are expressed as(
Lij + δijρ0ω

2
)
uj(x) = Nijuj(x)− qiδ(x− xc) (5)

Pijuj(x) = 0, at x3 = 0 (6)

where, Lij is the Navier differential operator, Nij is the differential operator
constructed by the fluctuations of the wave field, δij is Kronecker’s delta, δ(·)
is the Dirac delta function, qi is amplitude of the point source and xc is the point
where the point source is applied. The explicit forms of Lij , Nij are given by

Lij = (λ0 + μ0)∂i∂j + δijμ0∂
2
k (7)

Nij = −(λ̃(x) + μ̃(x))∂i∂j − δij μ̃(x)∂
2
k

− (∂iλ̃(x))∂j − δij(∂kμ̃(x))∂k − (∂j μ̃(x))∂i − δij ρ̃(x)ω
2 (8)

[Pij ] =

⎛
⎜⎝

μ(x)∂3 0 μ(x)∂1

0 μ(x)∂3 μ(x)∂2

λ(x)∂1 λ(x)∂2
(
λ(x) + 2μ(x)

)
∂3

⎞
⎟⎠ (9)

The solution of Eq. (5) together with the boundary condition shown in Eq. (9)
can be expressed by the following volume integral equation:

ui(x) = Gij(x, xc)qj −
∫
R

3
+

Gij(x, y)Njkuk(y)dy (10)

where Gij(x, y) is Green’s function for an elastic half space defined by(
Lij + δijρ0ω

2
)
Gjk(x, y) = −δikδ(x− y) (11)

together with the following boundary condition:

P
(0)
ij Gjk(x, y) = 0 (at x3 = 0) (12)

where operator P (0)
ij is given as:

[P
(0)
ij ] =

⎛
⎜⎝

μ0∂3 0 μ0∂1

0 μ0∂3 μ0∂2

λ0∂1 λ0∂2
(
λ0 + 2μ0

)
∂3

⎞
⎟⎠ (13)
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The volume integral equation in terms of the scattered wave field vi(x)

vi(x) = ui(x) −Gij(x, xc)qj (14)

is expressed by

vi(x) = −
∫
R

3
+

Gij(x, y)Njkvk(y)dy −
∫
R

3
+

Gij(x, y)NjkGkl(x, xc)qldy

(15)

2.2 A method for the volume integral equation based on the generalized
Fourier transform

The generalized Fourier and its inverse transforms [1] are used for solving
the volume integral equation shown in Eq. (15). These transforms are given
respectively in the following forms:

Uijfj(x) =

∫
R

3
+

Λ∗
ji(ξ, x)fj(x)dx (16)

U −1
ij f̂j(ξ) =

∫
R2

∑
ξ∈σp

Λij(ξ, x)f̂j(ξ)dξ1dξ2

+

∫
R2

∫ ∞

ξr

Λij(ξ, x)f̂j(ξ)dξ3dξ1dξ2 (17)

where Λij(ξ, x) is kernel of generalized Fourier transform satisfying the following
equation:

LijΛjk(ξ, x) = −μ0ξ
2
3Λik(ξ, x)

P
(0)
ij Λjk(ξ, x) = 0, at x3 = 0 (18)

and the subscript ∗ for Λij(ξ, x) denotes the complex conjugate. Note that ξ for
Λij(ξ, x) is the wavenumber vector having components

ξ = (ξ1, ξ2, ξ3) ∈ σp ∪ σc (19)

and ξr in Eq. (17) is denoted by

ξr =
√
ξ21 + ξ22 (20)

where σp and σc denote the set of the wavenumber for the Rayleigh wave and body
waves, respectively, defined by

σp = { ξ ∈ R
3
+ | (2ξ2r − ξ23)

2 − 4ξ2rγν = 0}
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σc = { ξ ∈ R
3
+ | ξ3 > ξr} (21)

In Eq. (21), γ and ν are defined by

γ =
√
ξ2r − ξ23(cT /cL)

2

ν =
√
ξ2r − ξ23 (22)

where cT and cL are the S and P wave velocities in the background structure.
The explicit forms of Λij(ξ, x) are very complicated and given in the article [1].
Therefore, due to the limitation of the length of the manuscript, the details of the
description of Λij(ξ, x) are omitted here.

There is an orthogonality relation for the kernel of the generalized Fourier
transform Λij(ξ, x) expressed by∫

R
3
+

Λ∗
ji(ξ

′, x)Λjk(ξ, x)dx = δikδ(ξ1 − ξ′1)δ(ξ2 − ξ′2) (23)

when ξ, ξ′ ∈ σp and∫
R

3
+

Λ∗
ji(ξ

′, x)Λjk(ξ, x)dx = δikδ(ξ1 − ξ′1)δ(ξ2 − ξ′2)δ(ξ3 − ξ′3) (24)

when ξ, ξ′ ∈ σc.
Applications of the generalized Fourier transform to the volume integral

equation leads to the following:

v̂i(ξ) = −ĥ(ξ)UijNjkU −1
kl v̂l(ξ) − ĥ(ξ)UijNjkGkl(x, xc)ql (25)

where v̂i(ξ) is the generalized Fourier transform of vi(x) and ĥ(ξ) is the function
related to the generalized Fourier transform of the Green’s function expressed by

ĥ(ξ) =
1

μ0ξ23 − ρ0ω2 + iε
(26)

Note that ε in Eq. (26) is an infinitesimally small positive number. Equation (25)
can be regarded as the Fredholm equation of the second kind. In an actual situation
of the numerical calculations, the generalized Fourier and its inverse transforms
are discretized, so that the Eq. (25) becomes the equation in the finite dimensional
vector space to which the Krylov subspace iterative method can be applied. In
the previous article [1], the trapezoidal formula is applied to the discretization of
the transform with respect to the vertical coordinate system. As a result, a large
amount of CPU time was required for numerical calculations, even if FFT2D was
incorporated into the horizontal coordinate system.

In this article, to reduce the CPU time, the kernel of the generalized Fourier
transform with respect to the vertical coordinate system is decomposed into the
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Fourier cosine, sine and Laplace transforms, to that fast algorithms can be applied.
For the fast Laplace transform, a method by Strain [7] is introduced here. By
means of the above method for the vertical coordinate system and FFT2D for
the horizontal coordinate system, a fast algorithm for the generalized Fourier
transforms can be established. The following numerical examples are based on
the fast method. Note that the present approach is free from the derivation of the
coefficient matrix which becomes huge scale and dense.

3 Numerical examples

In this article, numerical calculations are carried out for three cases. The first case
(case-1) takes into account the fluctuations of the Lamé constants and the next
case (case-2) takes into account the fluctuations of the mass density. The last case
(case-3) considers both the fluctuations of the Lamé constants as well as the mass
density. Those fluctuations for the Lamé constants and the mass density are shown
in Fig. 2. As can be seen in Fig. 2, the maximum amplitudes of the fluctuations of
the Lamé constants are 0.1 GPa, while that of the mass density is 0.1 g/cm

3. The
fluctuated areas spreads to areas whose radius is around 3 km.

The background structure of an elastic half space is set by λ0 = 4.0[GPa],
μ0 = 2.0[GPa] and ρ0 = 2.0[g/cm3]. For the discretization of the generalized
Fourier transform, the intervals of the grids in the space domain are set by
Δxj = 0.25 km, (j = 1, 2, 3). The relationship of the grids in the space domain
and the wavenumber space are given as

ΔxjΔξj =
2π

Nj
(j = 1, 2)

Δx3Δν̄ =
2π

N3
(27)

where Nj , (j = 1, 2, 3) is the number of grids for the j-th coordinate, Δξ1 and
Δξ2 are the intervals of the horizontal grids in the wavenumber domain and Δν̄
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(a) the Lamé constants

[g/cm^3]

-10 -5  0  5  10

x1[km]

 0

 5

 10

 15

 20

x3
[k

m
]

 0
 0.02
 0.04
 0.06
 0.08
 0.1

(b) the mass density

Figure 2: Fluctuation of the wave field.
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(b) Hankel transform

Figure 3: Comparison of the incident wave field.

defines the parameter for the interval of the grids for ξ3 such that

ξ3 =
√
ξ2r + n2Δν̄2, (0 ≤ n ≤ N3 − 1) (28)

A method for discretizing ξ3 is not very simple, which is due to decomposing
the integration with respect to ξ3 into the discrete Fourier and Laplace transform
[8]. In this numerical example,Nj , (j = 1, 2, 3) is set by 256.

Figures 3(a) and (b) show the comparison of the incident wave field for
scattering analyses, in which the amplitudes of the displacement field is described.
The incident wave field is constructed by the fast generalized Fourier transform for
Fig. 3(a), while that is constructed by the Hankel transform for Fig. 3(b). The point
source for the incident wave field is applied to a surface of the elastic half space.
The amplitude of the point source is 1.0 × 1010N, the direction is vertical and the
excitation frequency is 1.0 Hz. It is found from Figs. 3(a) and (b) that the both
results show good agreements, which verifies the accuracy of the fast generalized
Fourier transform. The regions for the high displacement amplitudes can be seen
in Fig. 3.

These regions are along the free surface boundary and towards the downward
direction showing a strong directionality, which are for the Rayleigh wave and the
body waves, respectively.

Figures 4(a)-(c) show the displacement amplitude of the scattered waves in
x1 − x3 plane for cases 1 to 3. The Bi-CGSTAB method as the Krylov subspace
iterative method is used to obtain the solutions of the volume integral equation. It
is found from Fig. 4(a) that high displacement amplitude areas are found to spread
mainly in the region where the propagation of the body waves can be seen. The
highest displacement amplitudes are recognized just outside the fluctuated zone
where the wave velocities are higher than those of the surroundings. The reason
for this is that the reflections of the waves form the fluctuated zone are caused.
According to Fig. 4(b), the displacement amplitudes are higher than those shown
in Fig. 4(a). The reason is that the wave velocities of the fluctuated zone are lower
than those of the surrounding due to the fluctuation of the mass density. As a result,
waves are amplified inside the fluctuated zone. It is found from Fig. 4(c) that the
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Figure 4: Displacement amplitudes of scattered waves in a vertical plane by the
present method.

high displacement amplitude areas are slightly narrower than the results of case 2.
The reason is that the contrast of the wave velocities inside the fluctuated zones to
those of the surroundings become smaller than those of case 2.

For the comparison of the above results, the scattered waves obtained from
the Born approximation are shown in Figs. 5(a)-(c). The equation for the Born
approximation is as follows:

vi(x) = −
∫
R

3
+

Gij(x, y)NjkGkl(x, xc)qldy (29)

which is according to Eq. (15). It is found from Fig. 5 that the displacement
amplitudes due to the Born approximations are almost the same as the results due
to the present method. The agreement of the results provided by the present method
and the Born approximation show that the fluctuations used in the present study
are not very large. In addition, the above agreement also strengthen the accuracy
of the present method.

[cm]

-10 -5  0  5  10

x1[km]

 0

 5

 10

 15

 20

x3
[k

m
]

 0
 8e-05
 0.00016
 0.00024
 0.00032
 0.0004

(a) case 1

[cm]

-10 -5  0  5  10

x1[km]

 0

 5

 10

 15

 20

x3
[k

m
]

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

(b) case 2

[cm]

-10 -5  0  5  10

x1[km]

 0

 5

 10

 15

 20

x3
[k

m
]

 0
 0.0002
 0.0004
 0.0006
 0.0008
 0.001

(c) case 3

Figure 5: Displacement amplitudes of scattered waves in a vertical plane by the
Born approximation.
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The numerical calculations were carried out here by a computer with an AMD
Opteron 2.4 GHz processor. The CPU time needed for the present example
based on the Bi-CGSTAB method was around 35 min. The introduction of the
fast algorithm are found to enable us to reduce the large amount of CPU time
recognized in the previous article [1], that was 15 hours.

4 Conclusion

In this article, scattered waves were analyzed by means of the volume integral
equation method. The starting point of the formulation was the volume integral
equation in the wavenumber domain, to which the generalized Fourier and its
inverse transforms were repeatedly applied during the Krylov subspace iterative
method. The method did not require the derivation of the coefficient matrix for
the integral equation. In addition, the introduction of the fast method was found
to enable us to reduce the large amount of the CPU time, which was observed in
the previous article [1]. The numerical calculations were carried out to examine
the effects of the fluctuations of the wave field by Lamé constants as well as the
mass density on scattered waves. According to the numerical results, the properties
of the scattered waves were well explained by the wave velocities inside as well
as surroundings of the fluctuated area. In addition, the effectiveness of the Born
approximation to the present numerical model was also verified.
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