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Abstract

The fast multipole boundary element method (FMBEM), based on the Burton-
Miller formulation for 3-D acoustic sensitivity analysis, is presented in this paper
in order to overcome the difficulties in the shape sensitivity analyses using the
boundary element method based on the direct differentiation method.

The Burton-Miller formulation, which is a linear combination of the conven-
tional boundary integral equation (CBIE) and its normal derivative (NDBIE),
is applied to circumvent the difficulty caused by the so-called fictitious eigen-
frequencies. The fast multipole method (FMM) is also employed to improve
the overall computational efficiency. The sensitivity boundary integral equations
of hypersingular type are obtained by the direct differentiation method. The
correctness and validity of the method are demonstrated through some numerical
results, from which the effectiveness of the present method is shown for 3-D
acoustic shape sensitivity analyses.
Keywords: acoustics, shape sensitivity, direct differentiation method, fictitious
eigenfrequency, Burton-Miller’s method, fast multipole boundary element method.

1 Introduction

The process of computing gradients of the defined acoustic performance function
associated with a structure with respect to design variables has been termed
as the acoustic sensitivity analysis. Although the BEM has the incomparable
superiority, which makes it widely used in the acoustic sensitivity analysis, it also
has some difficulties in solving exterior acoustic problems. The first one is that
the BEM with the CBIE fails to yield unique solutions for exterior problems at
the eigenfrequencies of the associated interior problems. These eigenfrequencies
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are called fictitious eigenfrequencies because they do not have any physical
significance. In order to tackle this difficulty, the Burton-Miller method is a more
sound and effective method than any other existing ones [1].

The second difficulty, which also restricts the usage of the BEM in large-scale
engineering problems, is the high computational complexity. For a problem with
N unknowns, a direct solver, such as the Gauss elimination method, requires
O(N3) solution cost and storage ofO(N2). Even worse, in the sensitivity analysis
by the direct differentiation method, more integral evaluations for each pair of
boundary elements are needed. However, the computation can be performed in
O(N) operations and O(N) memory requirement by using the FMBEM, for
example, in potential problems. The FMBEM was first proposed by Rokhlin [2],
and a comprehensive review can be found in [3].

In this paper, the FMBEM based on the Burton-Miller formulation for 3-D
acoustic problems is adopted to make the acoustic shape sensitivity analysis more
efficient. The well-known hypersingular nature of the NDBIE can be evaluated
without any difficulty by using the constant triangular element discretization,
which also makes the FMBEM more efficient than the regularization technique
because multipole expansion formulas and other translation formulas only have to
be implemented for the fundamental solution and its derivatives of the Helmholtz
equation.

2 Formulations

2.1 Conventional boundary element method (CBEM) formulations

The propagation of time-harmonic acoustic waves in a homogeneous and isotropic
acoustic medium is described by the following Helmholtz equation

∇2p(x) + k2p(x) = 0, (1)

where p(x) is the sound pressure at point x, and k = ω/c the wave number, ω the
circular frequency, c the acoustic velocity.

The boundary conditions for Helmholtz equation are written as

p(x) = p̄(x), on Γp, (2)

q(x) =
∂p

∂n
(x) = iρω v̄(x), on Γq, (3)

p(x) = zv(x), on Γz, (4)

where n(x) denotes the unite outward normal vector at point x, i the imaginary
unit, ρ the medium density, v(x) the particle velocity and z the acoustic impedance.
The quantities denoted with bars are assumed to be given values on the boundary.
In the case of acoustic radiation, p(x) must also satisfy the Sommerfeld’s radiation
condition.
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2.1.1 CBEM formulations for acoustic state analysis
The integral representation of the solution to the Helmholtz equation is

p(x) +
∫

Γ

q∗(x, y)p(y) dΓ(y) =
∫

Γ

p∗(x, y)q(y) dΓ(y). (5)

The CBIE and NDBIE of the Helmholtz equation are written, as follows:

C(x)p(x) + −
∫

Γ

q∗(x, y)p(y) dΓ(y) =
∫

Γ

p∗(x, y)q(y) dΓ(y), (6)

C(x)q(x) + =
∫

Γ

q̃∗(x, y)p(y) dΓ(y) = −
∫

Γ

p̃∗(x, y)q(y) dΓ(y), (7)

where (̃ ) = ∂( )/∂n(x), the constant C(x) is 1/2 if Γ is smooth around x, and −
∫

and =
∫

denotes the integral is evaluated in the sense of Cauchy’s principal value and
finite part of divergent integral, respectively. p∗(x, y) is the fundamental solution,
for 3-D problems it is given as

p∗(x, y) =
eikr

4πr
, (8)

where r = |x− y|, and q∗(x, y) is the normal derivative of p∗(x, y).
Both eqns (6) and (7) can be used to calculate the unknown boundary state

values. For exterior acoustic problems, by using either of them solely, unique
solutions cannot be obtained at the fictitious eigenfrequencies. However, Burton
and Miller [1] have shown that we can obtain unique solutions for all such
frequencies by using a linear combination of eqns (6) and (7) in the form:

C(x)p(x) + −
∫

Γ

q∗(x, y)p(y) dΓ(y) + α=
∫

Γ

q̃∗(x, y)p(y) dΓ(y)

= −αC(x)q(x) +
∫

Γ

p∗(x, y)q(y) dΓ(y) + α−
∫

Γ

p̃∗(x, y)q(y) dΓ(y),
(9)

where α is a coupling constant that can be chosen as i/k [4].
Discretizing eqn (9), collecting the equations for all the collocation points and

expressing them in matrix forms result in the following form of linear algebraic
equations:

[H]{p} = [G]{q}. (10)

Rearranging eqn (10) gives the following system of linear equations

[A]{x} = [B]{y}, (11)

where [A] is the system matrix, {x} and {y} are the unknown and known vectors.
Eqn (11) can now be solved and all the boundary state values are then known.

After that, it is possible to calculate p(x) at any point x within the problem domain
by using eqn (5).
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2.1.2 CBEM formulations for acoustic sensitivity analysis
In order to obtain the formulations for sensitivity analysis, eqns (5), (6) and (7) are
differentiated with respect to an arbitrary shape design variable to yield

.
p(x) +

∫
Γ

q∗(x, y)
.
p(y) dΓ(y) +

∫
Γ

.
q∗(x, y)p(y) dΓ(y)

+
∫

Γ

q∗(x, y)p(y)
.

dΓ(y) =
∫

Γ

p∗(x, y)
.
q(y) dΓ(y)

+
∫

Γ

.
p∗(x, y)q(y) dΓ(y) +

∫
Γ

p∗(x, y)q(y)
.

dΓ(y),

(12)

C(x)
.
p(x) + −

∫
Γ

q∗(x, y)
.
p(y) dΓ(y) + −

∫
Γ

.
q∗(x, y)p(y) dΓ(y)

+ −
∫

Γ

q∗(x, y)p(y)
.

dΓ(y) =
∫

Γ

p∗(x, y)
.
q(y) dΓ(y)

+
∫

Γ

.
p∗(x, y)q(y) dΓ(y) +

∫
Γ

p∗(x, y)q(y)
.

dΓ(y),

(13)

C(x)
.
q(x) + =

∫
Γ

q̃∗(x, y)
.
p(y) dΓ(y) + =

∫
Γ

.
q̃∗(x, y)p(y) dΓ(y)

+ =
∫

Γ

q̃∗(x, y)p(y)
.

dΓ(y) = −
∫

Γ

p̃∗(x, y)
.
q(y) dΓ(y)

+ −
∫

Γ

.
p̃∗(x, y)q(y) dΓ(y) + −

∫
Γ

p̃∗(x, y)q(y)
.

dΓ(y),

(14)

where the upper dot
.
( ) denotes differentiation with respect to the design variable,

and
.
p∗(x, y) can be related to the sensitivities of the coordinate as

.
p∗(x, y) = − eikr

4πr2
(1 − ikr)

∂r

∂yi
(
.
yi − .

xi), (15)

and
.
q∗(x, y),

.
p̃∗(x, y) and

.
p̃∗(x, y) can also be expressed in the form as

.
p∗(x, y).

Both eqns (13) and (14) can be used for acoustic boundary sensitivity analysis.
But for an exterior acoustic problem, similar to eqns (6) and (7), they also have a
different set of fictitious eigenfrequencies, and the linear combination of them can
also provide unique solutions for all frequencies.

Discretizing the linearly composite formulation of eqns (13) and (14), and
collecting the equations for all the collocation points and writing them in matrix
forms result in the following form of linear algebraic equations

[H]{.
p} = [G]{.

q} − [h]{p} + [g]{q}, (16)

where [H] and [G] are the same matrices as those in eqn (10), but [h] and [g] are
the newly derived matrices that must be computed here. Also, the unknown terms
of {p} and {q} in eqn (16) can be obtained by solving eqn (11).
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.
p (or

.
q) is also known on the boundary where p (or q) is prescribed. Therefore,

eqn (16) can be rearranged by using the boundary conditions for
.
p and

.
q as follows

[A]{ .
x} = [B]{ .

y} − [h]{p} + [g]{q}, (17)

where [A] and [B] are the same matrices as those in eqn (11), { .
x} and { .

y} are the
unknown and known vectors, respectively. Equation (17) can now be solved and
all the boundary sensitivity values are then known. Once this has been done, it is
possible to calculate

.
p(x) at any point within the problem domain by using eqn

(12).
The strongly-singular or hypersingular boundary integrals can be found in eqns

(6), (7), (13) and (14). In order to calculate them accurately, eqns (6), (7), (13)
and (14) are often regularized by using the fundamental solution of the Laplace’s
equation. But the regularized equations are not efficient to use in the FMBEM,
because multipole expansion formulas and other translation formulas have to be
implemented not only for the fundamental solution and its derivatives of the
Helmholtz’s equation but also for those of the Laplace’s equation. However, when
the constant triangular element is used to discretize the boundary, these strongly
singular and hypersingular integrals can be evaluated in the sense of finite parts
without any difficulty, hence FMBEM can be applied efficiently. The details of
evaluating such integrals for constant triangular elements can be found in [5, 6].

2.2 FMBEM formulations

In this section, the FMBEM is employed to solve the problems, and an iterative
solver, the generalized minimal residual method (GMRES), is used in the solution
process because the system of linear equations (11) and (17) is not formed
explicitly. Several expansion and translation formulas needed in the procedure of
the FMBEM have been well presented in [7].

The fundamental solution (8) can be expanded into the following series around
an expansion point O near y

p∗(x, y) =
ik

4π

∞∑
n=0

n∑
m=−n

(2n+ 1)Īm
n (k,

−→
Oy)Om

n (k,
−→
Ox), |−→Ox| > |−→Oy|, (18)

where

Im
n (k,

−→
Oy) = jn(k|−→Oy|)Y m

n (Ôy), (19)

Om
n (k,

−→
Ox) = h(1)

n (k|−→Ox|)Y m
n (Ôx), (20)

and Īm
n is the complex conjugate of Im

n , jn and h(1)
n are the n-th order spherical

Bessel function of the first and third kind, and Y m
n is the spherical harmonics.
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2.2.1 FMBEM formulations for acoustic state analysis
In the FMBEM procedure, we calculate first the following multipole moments for
the boundary element j far away from the collocation point x (|−→Ox| > |−−→Oyj |).

Mm
n (k,

−−→
Oyj) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Γj

∂Īm
n (k,

−→
Oy)

∂n(y)
p(y) dΓ(y) for Hijpj ,

∫
Γj

Īm
n (k,

−→
Oy)q(y) dΓ(y) for Gijqj .

(21)

Multipole moments of a group of � elements that are close toO (more precisely,
all elements in the same LEAF-cell whose center is point O) can be added up in
order to form Mm

n (k,O) that is the multipole moments centered at O.

Mm
n (k,O) =

�∑
j=1

Mm
n (k,

−−→
Oyj). (22)

The center of the multipole moment can be shifted fromO toO′ according to the

following Moments to Moments (M2M) translation formulation, if |−−→O′x| > |−−→O′y|.

Mm
n (k,O′) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)(−1)m′
Wn,n′,m,m′,l

× I−m−m′
l (k,

−−→
O′O)M−m′

n′ (k,O), (23)

where Wn,n′,m,m′,l is given by

Wn,n′,m,m′,l = (2l + 1)in
′−n+l

(
n n′ l

0 0 0

)(
n n′ l

m m′ −m−m′

)
,

(24)

and
( · · ·· · ·

)
stands for the Wigner 3j symbol [8].

The Moments to Local expansion (M2L) translation can be expressed as

Lm
n (k, x0) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)(−1)m+m′
Wn′,n,m′,m,l

×Om+m′
l (k,

−−→
O′x0)Mm′

n′ (k,O′). (25)
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The local expansion center can be shifted from x0 to x1 according to the
following Local expansion to Local expansion (L2L) translation formulation,

Lm
n (k, x1) =

∞∑
n′=0

n′∑
m′=−n′

n+n′∑
l=|n−n′|

n′+n−l:even

(2n′ + 1)(−1)mWn′,n,m′,−m,l

× Im−m′
l (k,−−→x0x1)Lm′

n′ (k, x0). (26)

Finally,
∑�

j=1H
ijpj or

∑�
j=1G

ijqj can be expressed in terms of the local
expansions using local expansion coefficients obtained from eqns (25) or (26) as

�∑
j=1

Hijpj or
�∑

j=1

Gijqj =
ik

4π

∞∑
n=0

n∑
m=−n

(2n+ 1)Lm
n (k, x1)

×
(
Īm
n (k,−−→x1x) + α

∂Īm
n (k,−−→x1x)
∂n(x)

)
. (27)

For elements that are close to the collocation point x, the conventional method
in Section 2.1.1 should be used.

2.2.2 FMBEM formulations for acoustic sensitivity analysis
The computation of

∑�
j=1H

ij
.
pj or

∑�
j=1G

ij
.
qj by using the FMBEM is similar

to that of
∑�

j=1H
ijpj or

∑�
j=1G

ijqj in the above section, so only the computa-

tion of
∑�

j=1(g
ijqj − hijpj) is discussed next.

It is easy to find that the computation of
∑�

j=1(g
ijqj − hijpj) should be done

in two steps, the multipole moments for these two steps are defined, as follows:

1Mm
n (k,

−−→
Oyj) =

∫
Γj

Īm
n (k,

−→
Oy)q(y) dΓ(y)−

∫
Γj

∂Īm
n (k,

−→
Oy)

∂n(y)
p(y) dΓ(y), (28)

and

2Mm
n (k,

−−→
Oyj) =

∫
Γj

(
∂Īm

n (k,
−→
Oy)

∂yi

.
yi q

j

)
dΓ(y) +

∫
Γj

Īm
n (k,

−→
Oy)qj

.
dΓ(y)

−
∫

Γj

(
∂2Īm

n (k,
−→
Oy)

∂yi∂yj
ni(y)

.
yj p

j

)
dΓ(y) −

∫
Γj

(
∂Īm

n (k,
−→
Oy)

∂yi

.
ni(y)pj

)
dΓ(y)

−
∫

Γj

(
∂Īm

n (k,
−→
Oy)

∂yi
ni(y)pj

)
.

dΓ(y). (29)

The M2M, M2L, L2L translation formulations for the two steps are the same as
eqns (23), (25) and (26). Finally,

∑�
j=1(g

ijqj − hijpj) can be expressed in terms
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of the local expansions as

�∑
j=1

(gijqj − hijpj) =
ik

4π

∞∑
n=0

n∑
m=−n

(2n+ 1) 1Lm
n (k, x1)

(
∂Īm

n (k,−−→x1x)
∂xi

.
xi

+ α
∂2Īm

n (k,−−→x1x)
∂xi∂xj

ni(x)
.
xj + α

∂Īm
n (k,−−→x1x)
∂xi

.
ni(x)

)

+
ik

4π

∞∑
n=0

n∑
m=−n

(2n+ 1) 2Lm
n (k, x1)

(
Īm
n (k,−−→x1x) + α

∂Īm
n (k,−−→x1x)
∂n(x)

)
. (30)

For elements that are close to the collocation point x, the integrals are evaluated
with the conventional method stated in Section 2.1.2.

3 Numerical examples

A pulsating sphere example that has the analytical solution is chosen to verify the
validity of the method. The radius a of the sphere is designated as a shape design
variable. The partial derivative of the sound pressure at a field point with respect
to this radius is calculated and compared with the analytical solution.

For a sphere vibrating with the velocity vn in the radial direction, the sensitivity
of the pressure with respect to a change of radius becomes

∂p(r)
∂a

=
ρcka

r

{
∂vn

∂a

ia

1 + ika
+ vn

[
2i− ka

1 + ika
+

ka

(1 + ika)2

]}
e−ik(r−a), (31)

where r is a distance from the center of the sphere to the field point of interest.
In the numerical analysis, we assumed as a = 1.0m, vn = 1.0m/s, and

sensitivities are calculated for a field point with r = 6.0m. The acoustic medium
is assumed to be air with a density of ρ = 1.2 kg/m3 and a sound velocity
of c = 340m/s. The values of

.
xi used for eqns (29) and (30) were given,

for simplicity, as the finite difference approximations calculated from the radius
augmented by 1%.

Figures 1 and 2 show the result for a 1078 constant triangular element model
with the wave numbers varying from 0.5 to 5.0. The solutions of real and
imaginary part of the sound pressure sensitivities are shown. It can be seen that
the CBIE or NDBIE solution follows the analytical solution closely except in
the vicinity of the fictitious eigenfrequencies. But the solution based on Burton-
Miller’s Method is very accurate over the entire range of the wave number.

Figures 3 and 4 show comparisons of relative errors and CPU times between
FMBEM, CBEM-LU and CBEM-GMRES. In all the computations, the maximum
number of elements in a leaf is set to 100, and the truncation number of multipole
and local expansion terms is set to10. The GMRES solver is to stop iterations
when the residual becomes smaller than the tolerance 10−3, and k is set to
0.5. All computations were done on a PC with an Intel 3.0GHz processor and
2GB memory. Figure 3 shows that the percentage relative errors of the FMBEM,
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Figure 1: Results for real part of ∂p(r)/∂a.

Figure 2: Results for imaginary part of ∂p(r)/∂a.

CBEM-LU and CBEM-GMRES are very close to each other, and all errors
decrease very fast as the number of elements increases. It is found from Figure
4 that the FMBEM is faster than the CBEM-LU for models with more than 4000
elements, and the FMBEM is also faster than the CBEM-GMRES for models with
more than 7000 elements.
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Figure 3: Comparison of relative error.

Figure 4: Comparison of CPU time.

4 Conclusions

A FMBEM approach has been presented in this paper for 3-D acoustic design
sensitivity analysis using the boundary integral equation of shape design sensi-
tivity coefficients of the sound pressure and particle velocity. Since the so-called
fictitious eigenfrequencies are also observed for the sensitivity analysis for exterior
acoustic fields, the Burton-Miller approach, which uses a linear combination of
CBIE and NDBIE for the sensitivity coefficients, is employed to overcome the
problem.
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The multipole moments and M2M, M2L, L2L translation formulas have been
presented for the derived sensitivity boundary integral equations. Some numerical
results for a pulsating sphere has been shown to demonstrate the validity and
computation efficiency of the present approach.
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