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Abstract 

The coupled problem of free and forced vibration of shells of revolution 
interacting with the liquid is under consideration. The problem was reduced to 
singular integral equations. The main objective of this paper is to present a 
detailed study of free and forced vibrations of a shell of revolution with an 
arbitrary meridian.  For solving the boundary value problem of determining the 
fluid pressure on the shell, the boundary element method (BEM) is used. This 
method substantially reduces the computer time for the analysis and reveals new 
qualitative possibilities in modeling the dynamic behavior of shells. Numerical 
investigations of natural frequencies and mode shapes of the cylindrical tank 
with the incompressible fluid have been carried out. The behavior of structures 
subjected to a dynamic loading and interacting with the fluid is investigated. 
Keywords: free vibrations, forced vibrations, fluid-shell interaction, boundary 
and finite element methods. 

1 Introduction 

Fluid-structure interaction has been studied extensively in the last decade [1–4]. 
The urgency of the problem is connected with wide application of the liquid 
storage tanks in engineering. The liquid storage tanks are important components 
of lifeline and industrial facilities. They are critical elements in municipal water 
supply and fire fighting systems, and in many industrial facilities for storage of 
water, oil, chemicals and liquefied natural gas, etc. 
     Several complexities are involved in the strength analysis of such tanks. If the 
excitation frequency is near the natural one, the high dynamic pressures may be 
produced on the tank walls due to the resonance. So calculation of the natural 
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frequencies and mode shapes is of great importance. Containers partially filled 
with the liquid are often subjected to an intensive external excitation. Problems 
associated with the dynamic behavior of the liquid storage tanks involve the 
analysis of two systems: the tank and the liquid, as well as the interaction 
between them along their boundaries. Due to the complexity of the problem, 
most of the original studies were experimental in nature. Several simplified 
theoretical investigations were also conducted and a few of these studies have 
been used as a basis for current design standards. 
     In [5, 6] authors offer the approach based on using the boundary element 
method (BEM) to the problem of natural vibrations of the fluid-filled elastic 
shells of revolution filled by the liquid, as well as to the problem of natural liquid 
vibrations in the rigid vessels. This approach has the certain advantages. In the 
basic equations the functions and their derivatives will be defined on the domain 
boundaries only. That allows reducing per unit dimension of the problem. In the 
present work the BEM technique is developed to research the processes of fluid-
structure interaction of the shells of revolution at the dynamic loading. In the 
present paper the new effective method is elaborated. This method gives new 
qualitative possibilities in modeling the dynamic coupled problems. 

2 Problem statement 

Let us consider the problem of free and forced vibrations of an elastic shell of 
revolution with an arbitrary meridian and partially filled with the ideal 
incompressible fluid. We shall indicate a moistened surface of a shell through S1. 
Let refer the Cartesian coordinate system 0xyz connected with a shell. The free 
surface of the liquid S0 coincides with the plane x0y in unperturbed state.  
     Suppose that the fluid is ideal and incompressible and the flow induced by 
vibrations of the shell is irrotational and consider small shell and fluid vibrations. 
Let U is the vector-function of the shell displacements and V is the fluid velocity 
vector. 
     Under these suppositions, there exists a velocity potential  defined as  
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     Assuming that the natural velocity of the fluid is zero, the pressure value, 
according to the Cauchy-Lagrange integral, can be represented as follows 

 
t
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  . (1) 

     Here Pl is hydrodynamic pressure in the disturbed motion, and l is the fluid 
density. A system of governing equations of motion of elastic shell with the 
liquid in the operator form is given by  

 QPl  UMLU  , (2) 

where L, М are operators of elastic and mass forces of the shell; U =  (u1, u2, w) 
is the displacement vector; Q(t) is the vector of external surface load. 
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     The kinematical boundary condition of the continuous fluid motion on the 
wetted shell surface S1 can be represented as follows:  

 w  nUVn , (3) 

where n is an external unit normal to wetted surface of the shell and w is the 
shell normal displacement. 
     Let z = Н is the coordinate of non-disturbed free surface S0 of the fluid. The 
boundary condition on S0 corresponds to the requirement of pressure absence on 
the free surface. It can be written as follows: 

 0lP . (4) 

     The hydrodynamic problem (1)–(4) can be described by using the only 
unknown function  (x, у, z, t). To determine the velocity potential we obtain the 
following boundary value problem: 

 Q UMLU , (5) 

 02  , (6) 

 1, SPw
n



  , (7) 

 0,0 SP . (8) 

Here it is supposed, that S = S1  S0 and point P belongs to surface S. 

3 System of the boundary integral equations 

To solve the coupled hydro-elasticity problem it is necessary to determine the 
fluid pressure on the wetted surface of the shell. This problem is here reduced to 
the solution of the system of singular integral equations. In this section it is 
supposed, that velocity of the elastic shell is given. Determination of the fluid 
pressure on the wetted surface of the shell leads to the mixed boundary value 
problem for the Laplace equations (5)–(8).  
     We will seek the natural modes of vibration in the fluid in the form 
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     Here functions ),,( zyxuk are modes of natural vibrations in vacuum, )(tck  

are unknown factors. To determine the set of functions k the following 
boundary value problems are formulated: 

 02  k , 10, SPw
n k

k 
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, (11) 

 mkSPk ,1,,0 00  . 
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     We will seek the harmonic functions k in the form of the sum of simple and 
double layer potentials [7]. The direct formulation of boundary integral equation 
method is in use. Dropping the index k, we have 
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     For the mixed problem described by eqns (5)–(8) this integral representation 
leads to the following system of singular integral equations: 
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with regard to unknown functions  and q. Here function  defined on the 
surface S1, represents the pressure on the wetted surface of the shell, and function 
q, defined on the surface S0, is the normal component of the fluid velocity on the 
free surface.  
     We use furthermore the cylindrical coordinate system and represent unknown 
functions as Fourier series by circumferential coordinate 

    cos, zrww ,      cos, zr . (14) 

     We will provide transformation in the same way as in [7]. The purpose is to 
bring the kernels in eqn (13) to standard elliptic integrals. Since  
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we obtain the following expression  
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     As the result of these transformations we have obtained the system of integral 
equations with one-dimensional integrals computed only along the meridian of 
the wetted surface of the shell and radius of the fluid free surface. 
     This system takes the following form 
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Here the following notations are introduced 
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     Letting 0  in the above expression, we obtain the standard elliptic first 
and second kind integrals. 
     For numerical solution of system described by eqns (13) the boundary 
element method with constant approximation of unknown density on elements 
was used. 

4 The mode superposition method for coupled dynamic 
problems 

After definition of functions k we substitute expressions (9), (10) in eqn (5) and 
obtain the following equation 
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     Let us k, uk are natural frequencies and free vibrations mode shapes of the 
shell in vacuum. For these the following relationships are valid 

 kkk uu ML 2 , kjjk uu ),(M . (16) 
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     Considering the result of dot product of eqn (15) by uj and taking into account 
relationship (16), we come to the set of second order differential equations about 
unknown factors ck 

 mjQuuccc jjk

m

k
kjkjjkjj ,1,

1

2  


 . (17) 

     To solve this system the Runge-Kutta method was used. Natural frequencies 
and modes of the shell vibrations in vacuum were defined by the finite element 
method. 

5 Numerical results 

Let us consider a cylindrical shell with a flat bottom partially filled with the 
fluid. The geometry of the tank is shown in Figure 1 and the parameters are 
following: the radius is R = 1 m, the thickness is h = 0.01 m, the length L = 2 m, 
Young’s modulus E = 2·105 MPa, Poisson’s ratio ν = 0.3, the material’s density 
is  = 7800 kg/m3, the fluid density l = 1000 kg/m3. The filling level of the fluid 
is denoted as H. Boundary conditions are following: 0 uuu zr  to z = 0 

and r = R.  
 

 

Figure 1: Cylindrical tank with the fluid. 

     At first we analyze free vibrations of the empty shell and the shell with the 
liquid. In the case of free vibrations we have Q = 0 in eqns (17). The results 
obtained for different numbers of circumferential waves  are presented in Table 
1. Here the natural frequencies calculated by proposed reduced method and finite 
element method (FEM) are demonstrated. Our results showed good agreement 
with ones obtained by usage the finite element complex. 
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Table 1:  Natural frequencies of cylindrical tank, H = 0.8 m. 

 m 
Natural frequencies, Hz 

Empty tank Fluid-filled tank 
Presented method FEM 

0 
1 23.23 8.15 8.06 
2 91.10 45.04 44.71 

1 1 48.52 20.98 20.86 
2 145.30 77.28 77.04 

2 1 79.77 40.04 39.90 
2 117.07 109.51 108.89 

 
     The next example is connected with forced vibrations coupled problem for 
cylindrical tank practically filled with the fluid. The radial load is suddenly 
applied to cylindrical surface of the tank Q(t) = Q0T(t), where Q0 = 10 МPа – 
distributed pressure,     /exp ttT , τ =  14.2·10-6 s. 

     Figures 2 and 3 are representative of the forced motion response as calculated 
by proposed method – solid lines and by the finite element complex – dash lines. 
Figure 2 shows the radial displacement response calculated in point 1 and 
Figure 3 shows the same one calculated in point 2. The point 1 is situated in the 
wetted part of the wall whereas point 2 belongs to boundary of the liquid free 
surface.  
 

 

Figure 2: Time history of the radial displacement at point 1. 
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Figure 3: Time history of the radial displacement at point 2. 

     These figures illustrate the frequency slowness of those shell parts that are 
interacting with the fluid. Figures also demonstrate good agreement of results 
obtained by different methods. That testifies the reliability of the method and 
algorithm proposed. It would be noted that FEM analysis requires 3D modeling 
to solve this coupled problem. 

6 Conclusions 

The numerical procedure based on a coupling the finite element formulation and 
the boundary element method is developed for the analysis of free and forced 
vibrations of shells of revolution with an arbitrary meridian partially filled with 
the fluid. Integration by the fluid volume is reduced to integrals along the shell 
meridian and along the radius of the liquid free surface. It is the basic advantage 
of our method based on a combination of the boundary integral equations 
method and expansion into Fourier series. The governing integral equations for 
each harmonic have been obtained. According to the approach the free vibrations 
problem was reduced to consecutive definition of frequencies and modes of the 
shell vibrations in vacuum (the first stage), and to the solution of the mixed 
problems for Laplace equation (the second stage). The forced vibration problem 
includes the same steps involving the liquid added masses into equations of 
motion. Numerical investigations of natural frequencies and forced vibrations of 
the cylindrical tank filled with the incompressible fluid have been carried out. 
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