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Abstract

In this paper we propose a simple method for detecting (shape, size and location)
a scatterer embedded in a host acoustic homogeneous medium from scant
measurements of the scattered acoustic pressure in the vicinity (near-or far-field)
of the obstacle. We develop a nonlinear constrained minimization regularized
method of fundamental solutions for obtaining the numerical solution of the
inverse problem. The stability of the numerical scheme is investigated by inverting
measurements contaminated with noise.
Keywords: inverse acoustic scattering, method of fundamental solutions.

1 Introduction

The inverse problems of time-harmonic acoustic scattering of waves from
obstacles of arbitrary shape embedded in a fluid, or solid medium have been of
considerable interest to researchers for many years, see e.g. [1]. In addition to
being of academic interest, these problems have physical applications in the fields
of radar and sonar detection; the ability to “see” in real time in complete darkness
in murky water for deep sea submarines, underwater surveillance and target
acquisition, detection of objects in the ocean, either fully submerged or partially
buried in the seafloor, ultrasound medical imaging of soft tissues, nondestructive
testing of materials, etc.

The inverse problem we consider in this paper is to determine the boundary
of an insonified scatterer from scant measurements of its response when excited
by impinging plane waves. The scatterer can be sound-soft, sound-hard or
convectively embedded in the full-space. Although some uniqueness results are
known, notably in [2], the problem is still difficult to solve since it is nonlinear,
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ill-posed (unstable), and computationally intensive in the high-frequency regime,
see [3].

Integral equation methods, see e.g. [4], provide a basic tool in scattering
theory mainly due to the fact that the formulation of obstacle scattering problems
leads to boundary value problems defined over unbounded domains. Hence, their
formulation in terms of boundary integral equations not only reduces by one the
dimensionality of the problem, but also replaces a problem over an unbounded
domain by one over a bounded contour, or surface. From a numerical point of view
both these advantages have made integral equation methods, such as the boundary
element method (BEM) one of the most powerful technique for the approximate
solution of obstacle scattering in homogeneous media, see [5].

The method of fundamental solutions (MFS) may be viewed as a meshless
BEM in which the governing field is approximated by a linear combination of
fundamental solutions for the Helmholtz equation whose singularities are placed
outside the solution domain. In contrast to the BEM, the MFS provides accurate
approximations directly at points arbitrarily close to the boundary. Moreover, since
no shape functions or elements are involved, it is easier to implement than the
BEM. Also, the fictitious eigenfrequency difficulty with occurs with the BEM for
the exterior Helmholtz problem apparently is not present in the MFS, [6]. Up to
now, the MFS has never been applied to inverse obstacle scattering, although its
principal idea of representing the solution as a single-layer potential has been used
previously in [7].

In this paper, first, the direct, linear and well-posed problem of acoustic
scattering for time-harmonic waves from impenetrable obstacles is approached
using the MFS to find the scattered wave. Then, using a random noisy perturbation
of the scattered wave as input data, the inverse, nonlinear and ill-posed problem of
determining the boundary of the obstacle is approached based on a regularized
optimization procedure which uses the MFS solver at each iteration until a
prescribed stopping criterion is satisfied. A similar approach using the BEM
instead of MFS has been previously investigated in [8], but only for sound-hard
obstacles parameterised by a maximum of seven parameters and for exact scattered
wave data only.

The method proposed in this paper can be easily extended to penetrable
obstacles, as well as to electromagnetic scattering problems.

2 The direct problem

We are concerned with the scattering of a time harmonic acoustic wave by a
bounded impenetrable obstacleD ⊂ R

n. The wave motion can then be determined
from the potential u which satisfies the Helmholtz equation

Δu+ k2u = 0 in R
n\D̄, (1)

where k > 0 is the wave number.
For the direct (forward) scattering problem, we are given the wave number

k > 0, a bounded region D ⊂ R
n with boundary ∂D ∈ C2 such that Rn\D̄ is
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connected, and an incident field given by a plane wave moving in the unit direction
d̂, namely

uinc(x) = eikx· ̂d. (2)

Then the scattering of uinc by D produces a scattered wave us with
corresponding total field u = us + uinc. The direct scattering problem is to
determine the scattered pressure us ∈ C2(Rn\D) ∩ C1(Rn\D) which satisfies
the Helmholtz equation (1), i.e.

Δus(x) + k2us(x) = 0, x ∈ R
n\D, (3)

the Sommerfeld infinity radiation condition

lim
R→∞

R(n−1)/2
(∂us
∂R

(x)− ikus(x)
)
= 0 (4)

uniformly with respect to x̂ = x/|x|, whereR = |x|, and the boundary conditions
corresponding to:

(a) a sound-soft obstacle (Dirichlet boundary condition)

u(x) = 0 ⇐⇒ us(x) = −eikx· ̂d, x ∈ ∂D. (5)

(b) a sound-hard obstacle (Neumann boundary condition)

∂u

∂ν
(x) = 0 ⇐⇒ ∂us

∂ν
(x) = −∂(e

ikx· ̂d)
∂ν

(x), x ∈ ∂D, (6)

where ν is the outward unit normal to ∂D.
(c) a convective obstacle (impedance, Robin boundary condition)

∂u

∂ν
(x) + iλu(x) = 0, ⇐⇒ ∂us

∂ν
(x) + iλus(x)

= −∂(e
ikx· ̂d)
∂ν

(x)− iλeikx· ̂d, x ∈ ∂D, (7)

where λ ∈ C, �(λ) ≥ 0 is the impedance parameter.
In the above model we have assumed that the obstacle D is impenetrable.

The case of penetrable obstacles which leads to a transmission problem will be
investigated elsewhere.

The unique solvability of the direct problems (3)-(5), (3), (4) and (6), (3), (4) and
(7) is well-established, see e.g. [1]. Furthermore, one has the following Green’s
representation formula

η(x)us(x) =

∫
∂D

[
us(y)

∂Gn

∂ν(y)
(x,y)−Gn(x,y)

∂us

∂ν
(y)

]
ds(y), x ∈ R

n\D,
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where η(x) = 1 if x ∈ R
n\D and η(x) = 1

2 if x ∈ ∂D, and Gn is a
fundamental solution of the Helmholtz equation defined by

Gn(x,y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i

4
H

(1)
0 (k|x− y|), n = 2,

eik|x−y|

4π|x− y| , n = 3,

(8)

where H(1)
0 denotes the Hänkel function of the first kind and of order zero.

3 The far-field pattern

The radiation condition (4) leads to an asymptotic behaviour for the scattered wave
of the form

us(x) =
eikR

R(n−1)/2
{u∞(x̂) +O(R−1)}, R → ∞

uniformly with respect to x̂, where the function u∞ is called far-field pattern of
the scattered wave. The following representations for the far-field pattern are given
in [9].

(a) In the case of the Dirichlet boundary condition (5) we have

u∞(x̂) = −γn
∫
∂D

∂u

∂ν
(y)e−ikx̂·yds(y). (9)

(b) In the case of the Neumann boundary condition (6) we have

u∞(x̂) = γn

∫
∂D

u(y)
∂

∂ν
(e−ikx̂·y)ds(y). (10)

(c) In the case of the Robin boundary condition (7) we have

u∞(x̂) = γn

∫
∂D

u(y)

[
∂

∂ν
(e−ikx̂·y) + iλe−ikx̂·y

]
ds(y), (11)

where γ2 = (1 + i)/(4
√
kπ) and γ3 = 1/(4π).

4 Inverse problems

In this section we recall several uniqueness results for inverse obstacle scattering
problems.
Inverse Problem 1 (IP1)
Determine D from the knowledge of u∞(x̂, d̂) for all x̂, d̂ ∈ Sn−1 and for one
fixed wave number k0 > 0.
Theorem 1. ([10]). Let ui be the total fields corresponding to sound-soft or -hard
obstacles Di for i = 1, 2. If u1∞(x̂; d̂) = u2∞(x̂; d̂) for all x̂, d̂ ∈ Sn−1, then
D1 = D2.
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Inverse Problem 2 (IP2)
Determine D from the knowledge of u∞(x̂; d̂0) for all x̂ ∈ Sn−1, for one fixed
wave number k0 > 0 and for one fixed direction d̂0 ∈ Sn−1.
Theorem 2. ([2]). Let ui be the total fields corresponding to sound-soft obstacles
Di ⊂ B(0, ζn) for i = 1, 2, where ζ2 = 2.40482/k and ζ3 = π/k. If
u1∞(x̂) = u2∞(x̂) for all x̂ ∈ Sn−1, then D1 = D2.

Inverse Problem 3 (IP3)
DetermineD from the knowledge of us on some closed surface Γ containingD in
its interior.

By the uniqueness for the exterior Dirichlet and Neumann problems, knowing
us an a closed surface Γ containingD implies knowing the far-field pattern u∞ of
us. Therefore, the uniqueness results of Theorems 1 and 2 for the reconstruction
from far-field data immediately carry over to the case of near-field data.

Although Theorems 1 and 2 ensure the uniqueness of the solution of the IP1,
IP2 and IP3, the inverse problems are still ill-posed (unstable), as can be seen from
the following theorem.
Theorem 3. ([7]). For a fixed incident field uinc, the mapping ∂D �→ u∞ is con-
tinuous from C1 into L2(Sn−1).

Therefore, one has to solve the nonlinear and ill-posed operator equation

F (∂D) = u∞ (12)

for the unknown boundary ∂D ∈ C1 by standard inversion methods, [5].
The IP1 has been treated in detail in [11] and therefore, in this study only the

IP2 and IP3 will be investigated.

5 The method of fundamental solutions (MFS)

Based on the density results of Bogomolny [12], in the MFS we seek the solution
of Helmholtz equation (3) in the form, see e.g. [13],

us(x) =

N∑
j=1

cjGn(x,yj), x ∈ R
n\D, (13)

where yj ∈ D are singularities located in D, which are assumed fixed and
prescribed, and cj are unknown coefficients to be determined by imposing the
boundary conditions (5), (6) or (7).

We consider the inverse problem IP3 for simplicity, and choose as measurements

us(xm) = φm,
∂us

∂ν
(xm) = ψm, m = 1,M, (14)

where (xm)m=1,M are uniformly distributed on the surface of the ball B(0, ζn).
Assuming that the obstacleD is star-shaped, we also considerN distributed points
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x̃m on ∂D characterized by the radii rm = r(̂̃xm) for m = 1, N on which we
apply the boundary conditions

us(x̃m) = −eikx̃m· ̂d, (15)

or
∂us

∂ν
(x̃m) = − ∂

∂ν
eikx̃m· ̂d, (16)

or
∂us

∂ν
(x̃m) + iλus(x̃m) = − ∂

∂ν
(eikx̃m · ̂d)− iλeikx̃m· ̂d. (17)

We also choose the singularities located at the N uniformly distributed points
yj in D characterized by radii r(yj) = ηrj , j = 1, N , where η ∈ (0, 1) is an
appropriately chosen constant. Since D ⊂ B(0, ζn) this also ensures that yj are
not situated on a closed curve Γ0 for which −k2 could be an eigenvalue for the
Dirichlet problem for the Laplace equation in the interior domain enclosed by Γ0.
Therefore, we have 2N unknowns (rm)m=1,N and (cj)j=1,N .

Imposing the sound-soft boundary condition (15) say, results in N equations,
namely,

−eikx̃m·d̂ =

N∑
j=1

cjGn(x̃m,yj), m = 1, N. (18)

Imposing the measurement conditions (14) results in 2M equations, namely,

φm =

N∑
j=1

cjGn(xm,yj), ψm =

N∑
j=1

cj
∂Gn

∂ν
(xm,yj), m = 1,M. (19)

5.1 Two-dimensional implementation

The two-dimensional MFS implementation is similar to that developed by the
authors in [14] for the electrical impedance tomography in electrostatics. Let
θ̃m = 2πm/N for m = 0, N , be a uniform discretisation of the interval [0, 2π].
Assuming that the obstacleD is star-shaped with respect to the origin, we consider
the unknown boundary ∂D given in parametric form by the points

x̃m = (rm cos(θ̃m), rm sin(θ̃m)), m = 1, N, (20)

where rm > 0 for m = 1, N are unknown. The measurements (14) are given on
the circle B(0, ζ2) which has the parametric form

xm = (ζ2 cos(θm), ζ2 sin(θm)), m = 1,M, (21)

where θm = 2πm/M for m = 0,M . The singularities in D are given by

yj = (η rj cos(θj), η rj sin(θj)), j = 1, N. (22)
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Then we minimize the penalized least-squares functional

Tμ(c, r) :=
N∑

m=1

∣∣∣∣∣∣
N∑
j=1

cjG2(x̃m,yj) + eikx̃m·d̂

∣∣∣∣∣∣
2

+

M∑
m=1

∣∣∣∣∣∣
N∑
j=1

cjG2(xm,yj)− φm

∣∣∣∣∣∣
2

+

M∑
m=1

∣∣∣∣∣∣
N∑
j=1

cj
∂G2

∂ν
(xm,yj)− ψm

∣∣∣∣∣∣
2

+μ1

N∑
j=1

|cj |2+ μ2

M∑
�=2

(r� − r�−1)
2 , (23)

where μ1, μ2 > 0 are regularization parameters, subject to the simple bounds on
the variables

0 < rm < ζ2, m = 1, N. (24)

This optimization problem is accomplished using the MINPACK [15] routine
lmdif which minimizes the unconstrained sum of squares of nonlinear functions
and which does not require supplying the gradient of the functional (23). The
constraints (24) are imposed during the iterative procedure by adjustment at
each iteration. The minimization process terminates when either a user-specified
tolerance is achieved or when a user-specified maximum number of function
evaluations, maxfev, is reached. Thus in some cases, it is possible that the actual
number of function evaluations preformed, nfev, is less than maxfev. In all
numerical experiments carried out we set the tolerance to be equal to 10−10. The
initial guess is only constrained to (24) and we have taken it to be a circle of radius
r0 centered at the origin.

The calculation of the fundamental solution G2 in (8) and its derivatives is
carried out using the code MJY01A from [16].

In three-dimensions one can use spherical coordinates.

6 Numerical results and discussion

We consider the simple case of a plane wave of wave number k = 1 forming
an angle of α = 0 with the x-axis impinging on a circular sound-soft scatterer
of unit radius B(0; 1). The measurements (14) are taken on the circle of radius
ζ2 = 2.40428. The exact solution for the direct scattering from a sound-soft
circular obstacle B(0; a) satisfying equations (1), (2), (4) and (5) is given by, see
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e.g., [1],

u(r, θ) = J0(kr) − J0(ka)H
(1)
0 (kr)

H
(1)
0 (ka)

+

2

∞∑
�=1

i� cos(θ)

[
J�(kr) − J�(ka)H

(1)
� (kr)

H
(1)
� (ka)

]
,

(r, θ) ∈ R
2\B(0; a), r ≥ 1, θ ∈ [0, 2π), (25)

where H(1)
� and J� are the Hänkel and Bessel functions of the first kind of order

, respectively. Note that the expression (25) is calculated by means of the routine
MJYNA from [16]. We take r0 = 0.6 and η = 0.3. In order to investigate the
stability of the numerical solution, we fix M = N = 64 and vary the amount of
noise p included in the input data (14).

In Figure 1 we present the plots of the reconstructed boundary for noise p = 5%,
no regularization and with various numbers of nfev. It can be observed that
as nfev increases so does the instability. In Figure 2 we present the plots of
the reconstructed boundary for various values of the regularization parameter μ1

in (23) for μ2 = 0 and p = 5%. In all cases maxfev was set to 5 × 105.
Interestingly, the effect of increasing the value of μ1 was to reduce the number
of nfev where convergence was reached. Improved stable results were obtained
for μ1 = O(10−4)÷O(10−2). In Figure 3 we present the plots of the reconstructed
boundary for various values of the regularization parameter μ2 in (23) for μ1 = 0,
p = 5% and maxfev= 5 × 105. Improved stable results were obtained for
μ2 = O(10−2)÷O(1).

7 Conclusions

In this paper, it has been shown that the MFS is well-suited for the solution
of inverse obstacle problems arising in acoustic scattering. The numerical
experiments yield accurate results for exact data, but instabilities appear when

nfev=10000 nfev=100000 nfev=200000

nfev=500000 nfev=750000 nfev=1000000

Figure 1: Results for various values of nfev for p = 5% and no regularization.
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1
=0, nfev=5  105 

1
=10−6, nfev=353  103 

1
=10−4, nfev=9  103


1
=10−3, nfev=6  103 

1
=10−2, nfev=5  103 

1
=10−1, nfev=5  103

Figure 2: Results for various values of μ1 for p = 5%, when μ2 = 0.


2
=0 

2
=10−6 

2
=10−4


2
=10−2 

2
=10−1 

2
= 100

Figure 3: Results for various values of μ2 for p = 5%, when μ1 = 0 and
nfev= 5× 105.

noise is introduced into the input data. Regularization can be achieved either
by appropriately limiting the number of function evaluations or by introducing
penalty terms in the objective cost functional which is minimized. The retrieval
of more complicated shapes, multiple scatterers and the implementation of a
corresponding three-dimensional MFS algorithm will be the subject of future
work.
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