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Abstract

An improvement to the traditional Finite Volume Method (FVM) for
the solution of boundary value problems is presented. The new method
applies the local Hermitian interpolation with Radial Basis Functions (RBF)
as an interpolation scheme to the FVM discretization. This approach,
called the Control Volume-Radial Basis Function (CV-RBF) method, uses
an interpolation scheme based on the meshless Symmetric method, in
which the numerical solution is approximated by employing the govern-
ing equation and the boundary condition operators. The RBF implemented
is the Multiquadric (MQ) with a shape parameter found experimentally. The
two-dimensional solutions to the Dirichlet problem for linear heat conduction,
heat transfer in the Poiseuille flow and the non-linear conduction situations are
obtained by the CV-RBF method. The numerical results are in agreement with the
corresponding analytical and numerical solutions found in the literature.
Keywords: radial basis function, finite volume method, heat transfer, local Hermi-
tian interpolation.

1 Introduction

The Finite Volume Method (FVM) has become one of the preferred discretization
strategies in the field of transport phenomena. The interpolation scheme used to
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approximate the diffusive and convective fluxes on the volume faces is an impor-
tant aspect for improving the FVM. The compilation of interpolation schemes done
by Patankar [1] and later by Versteeg and Malalasekera [2] and Wesseling [3], has
been enlarged to a variety of strategies with the aim of decreasing the truncation
error preserving convergence, stability and consistency. In addition, interpolation
schemes that are able to treat unstructured meshes are necessary to get solutions
for the transport phenomena equations in domains with complex geometry.

To achieve an efficient and accurate approximation of the fluxes at the volume
faces on unstructured meshes, several authors proposed schemes that use tradi-
tional FVM in conjunction with high order approximation methods, for instance,
a two-dimensional polynomic approximation [4], the Least Square Reconstruction
Technique (LSRT) [5] and the Gauss-Green Reconstruction technique (GGRT)
[6, 7]. In addition, the geometric treatment required to compute approximated
fluxes is the cause of the high dependence of the FVM on the mesh configuration.
A meshless interpolation scheme can be a good option to weaken this relationship.
According to the above, the Radial Basis Function (RBF) collocation method is
used here as an interpolation scheme, which results in a high order approximation
[8] that is able to fit quasi-scattered data.

Currently the RBF collocation is widely used in the scattered data interpolation.
In addition, it is the base of several meshless methods used to solve Partial
Differential Equations (PDEs). The first attempt to develop a meshless method
by RBF collocation was made by Kansa [9]. Kansa used the Multiquadric (MQ)
function to obtain an accurate meshless solution to the advection-diffusion and
Poisson equations without employing any special treatment for the advection term
(upwinding), due to the high order of the resultant scheme and the intrinsic rela-
tionship between governing equations and the interpolation. This strategy involved
all the nodes in the domain, therefore it produced a global full matrix. Although the
Kansa’s method was used by many authors to solve the Laplace, the Poisson, the
Helmotz and Parabolic equations, showing better accuracy compared to traditional
methods [10–13], Kansa and Hon [14] concluded that the matrix ill-conditioning
worsens as the number of nodes increases. In the case of using the MQ function, a
singular matrix is obtained for some values of the shape parameter. Fasshauer [15]
used the Hermite interpolation to construct an approximated function that resulted
in a symmetric matrix and therefore a lesser amount of computation. He concluded
that, for the PDEs solved, the Hermite interpolation or the Symmetric method
perform slightly better than the Kansa or Unsymmetric methods. Jumarhon et
al. [16] obtained a similar improvement using the Symmetric method and Power
and Barraco [17] obtained better results by employing the Symmetric method for
a variety of problems, including the convection diffusion equation.

Due to the ill-conditioned matrix of the global RBF collocation, it was imple-
mented locally to improve the traditional methods for solving PDEs. The Finite
Difference Method (FDM) was modified by Wright and Fornberg [8] to obtain
higher order approximation by employing RBF Hermite interpolation. In the Finite
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Volume Method (FVM), the RBF collocation was first implemented as an interpo-
lation scheme by Moroney and Turner [18] to solve the two-dimensional non-
linear anisotropic diffusion equation and later, by Moroney and Turner [19] for the
three-dimensional case in the same situation. Recently Orsini et al. [20] solved the
diffusion convection equation by the FVM in conjunction with the RBF Hermite
interpolation scheme. They had the convective and diffusive fluxes in terms of
neighboring node values according to the Symmetric method and called this
strategy the Control Volume-Radial Basis Function (CV-RBF).

In this work, the CV-RBF method is used to solve the two-dimensional heat
equation for steady situations. In the next section the mathematical model that
governs the steady heat convection and conduction is presented. After, the CV-RBF
method is explained and the final discrete equation for the generic convection-
diffusion problem is obtained. Finally, the numerical result are presented and
compared with numerical and analytical solutions found in literature.

2 Governing equations

From the energy balance in an incompressible continuum medium, the heat
equation (1) is obtained by subtracting the mechanical energy, expressing the
internal energy in terms of the temperature and neglecting the accumulation and
viscous dissipation terms. In this expression ρ is the medium density, Ĉp is the
specific heat at constant pressure, �v is the velocity field and S is the source term,
which can depend on temperature and space.

ρĈpvj
∂T

∂xj
= − ∂qj

∂xj
+ S(T, �x) (1)

The molecular phenomena responsible of the conduction heat flux �q in an
isotropic system can be quantified on a macroscopic level by Fourier’s Law (2),
where k is the thermal conductivity.

qi = −k(T )
∂T

∂xi
(2)

3 Control volume-radial basis function

The CV-RBF method improves the traditional FVM by an interpolation scheme
based on the Hermitian RBF. In this section, the formulation of the CV-RBF
method developed by Orsini et al. [20] applied to the heat equation is presented.

3.1 Finite Volume Method discretization

The discretization process is applied to the heat equation (1) after substituting the
Fourier’s law (2) in it. First, the governing equation is integrated over a generic
volume and the divergence theorem is applied to obtained the expression (3), where
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Ω and ∂Ω are the finite volume and its surrounding surface, respectively.∮
∂Ω

k
∂T

∂xi
nid∂Ω −

∮
∂Ω

ρĈpviTnid∂Ω = −
∫

Ω

SdΩ (3)

Using non-overlapping polygonal volumes, the surface integral can be expressed
as the sum of the integrals over each of the m volume faces. Then, the surface and
volume integrals have to be approximated by a numerical method. In this case for
simplicity and according to traditional FVM, the mid-point rule is employed both
for the surface and volume integrals. The resultant expression (4) is the final FVM
discretized equation. The volume and surface geometric centers are �xp and �xl,
respectively.

m∑
l=1

(
k
∂T

∂xi
niΔ∂Ω

)⏐⏐⏐⏐
�x=�xl

−
m∑

l=1

(
ρĈpviTniΔ∂Ω

)
|�x=�xl

= −S(�xp)ΔΩ (4)

To complete the solution procedure, the dependent variable and its gradient, at
the surface central points, have to be approximated in terms of the neighbor volume
central nodes according to an interpolation scheme.

3.2 Local Hermitian Interpolation scheme

The Hermitian Interpolation scheme is a symmetrical RBF collocation technique
used to solve PDEs. The RBF main feature is the only dependence in Euclidian
distance between the evaluation point �x and the trial nodes �ξ. Another characteris-
tic is the monotonically increasing or decreasing of the function with the distance
from the evaluation point. Here, the RBF used is the Multiquadric MQ function
(5), where r = ‖�x − �ξ‖ is the Euclidian distance and c is the shape parameter
which allows to modified the slope of the function. The MQ function converges
exponentially and is conditionally positive defined of order m > 0, since a m− 1
order polynomial has to be added to get a non-singular interpolation matrix. In this
case, m = 1 and the shape parameter is obtained by numerical experiments.

Ψ(r) = (r2 + c2)m/2 (5)

A boundary value problem is considered for the dependent variable φ. The
problem is defined by equations (6) and (7), where L and B are linear differential
operators that apply over the domain Ω and the boundary ∂Ω, respectively.

L[φ(�x)] = f(�x) (6)

B[φ(�x)] = g(�x) (7)

In RBF collocation strategies to solve PDEs are two basic procedures: Kansa’s
Method [9] and Symmetric Method [21]. The Hermite Interpolation scheme is
used on the Symmetric method. A variation of the latter Symmetric method was
developed by Orsini et al. [20], in which the Hermite Interpolation applies locally.
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Figure 1: Node locations inside the stencil: • central nodes (NP), ◦ boundary
points (NB), × internal nodes (NPDE).

In this case, it is necessary to define a subdomain which contains the nodes. In the
CV-RBF method, the subdomain is called stencil and it contains the central volume
and at least one neighbor volume. The stencil includes NP central nodes or points
where the variable is unknown, NB boundary points where the boundary operator
is applied and NPDE internal locations where the governing PDE operator is
enforced. The stencil used here was called one stencil one face by Orsini et al. [20]
and is shown in Figure 1 in the case of a two-dimensional triangular unstructured
mesh.

Unlike the global Symmetric method, the approximated function is given by the
equation (8), where Lξ and Bξ are the differential operators acting on Ψ view as a
function of �ξ, r is the number of polynomial terms and NT is the total number of
points inside the stencil. By replacing the approximation function in the boundary
condition (7) and the governing PDE (6) and evaluating the resultant formulae
at the respective points, a linear system Aα = B is obtained. The symmetric
interpolation matrixA is given by the equation (9) and the column vector B by the
expression (10).

φ(�x) =
NP∑
j=1

αjΨ(‖�x− �ξj‖) +
NP+NB∑
j=NP+1

αjBξ[Ψ(‖�x− �ξj‖)]

+
NP+NB+NPDE∑

j=NP+NB+1

αjLξ[Ψ(‖�x− �ξj‖)] +
r∑

j=1

αj+NTP
j
m−1(�x) (8)

A =

⎛
⎜⎜⎜⎜⎝

Ψ Bξ[Ψ] Lξ[Ψ] Pm−1

Bx[Ψ] BxBξ[Ψ] BxLξ[Ψ] Bx[Pm−1]
Lx[Ψ] LxBξ[Ψ] LxLξ[Ψ] Lx[Pm−1]
PT

m−1 Bx[PT
m−1] Lx[PT

m−1] 0

⎞
⎟⎟⎟⎟⎠ (9)
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B =

⎛
⎜⎜⎜⎜⎝

φvol

g(�x)
f(�x)

0

⎞
⎟⎟⎟⎟⎠ (10)

The above linear equation system can not be solved because the column vector
B includes, in φvol, the NP unknown values of the variable at the central nodes
contained in the stencil. However, the coefficient α in terms of the unknown
variable values can be used to interpolate the variable and its gradient at the
locations required by the FVM discretization. To do this, the approximated
gradient is obtained by deriving the function (8). Then, the approximated variable
and its gradient can be expressed in matrix notation by equations (11) and (12).
The matrices C1 and C2 are known from the geometrical information, since they
include the RBFs and the resultant functions after applying operators to them.

φ(�x) = [C1l]
T [α] (11)

∂φ(�x)
∂xi

= [C2il]
T [α] (12)

To solve the heat equation (1) by the CV-RBF method, it is necessary to replace
the variable (11), in this case temperature, and its gradient (12) obtained by the
local Hermitian Interpolation in the FVM discretized equation (4). The expression
obtained from this procedure is the final CV-RBF discretized equation (13). By
applying the expression (13) to each one of the finite volumes, a linear or non-
linear system of equation is obtained.

(
m∑

l=1

(
kCT

2iniΔ∂Ω
)∣∣

�x=�xl
−

m∑
l=1

(
ρĈpC

T
1 viniΔ∂Ω

)∣∣∣
�x=�xl

)
A−1B

− S(�xp)ΔΩ = 0 (13)

In the non-linear case, the Newton-Rapshon method is used to solve the resultant
equation system by computing numerically the Jacobian matrix by the central
difference scheme. To applied the Hermitian Interpolation, a linear operator L
has to be constructed from the governing equation. In the case of non-linear heat
conduction, the Laplace operator is obtained according to the expression (14). The
superindex n refers to the quantity values at the present iteration.

Lx(Tn) =
∂2Tn

∂xi∂xi
=

1
k(Tn−1)

(
−∂k(T

n−1)
∂T

∂Tn−1

∂xi

∂Tn−1

∂xi
− S(�x)

)
(14)

4 Numerical results

The CV-RBF method is applied to solve the heat equation (1) on two dimensional
domains for the linear and non-linear heat conduction in a solid, and to the thermal
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(a) (b)

Figure 2: Domain characteristics, (a) geometry, (b) unstructured mesh.

developing profile in the plane Poiseuille flow. The results are compared to the
analytical solution for case of conduction, and to the numerical results found in
literature for the convection problem.

4.1 Dirichlet problem

A rectangular domain ofW×Lwhich represents a solid thin plate is considered. In
Figure 2 (a), the geometry and the boundary conditions are shown. The governing
equation is reduced to the expression (15) in terms of the variable θ = T − T1

where T1 is the temperature in all boundaries except at x2 = W .

∂

∂xj

(
k
∂θ

∂xj

)
= −S(x1, x2) (15)

The boundary condition at x2 = W is given by the expression (16) and the
respective analytical solution is the equation (17), where θm = T2 − T1 and T2

is the maximum temperature value. The shape parameter for the MQ function is
equal to the mean distance between central and neighbor nodes.

f(x1) = T2 sin
(nπx1

L

)
(16)

θ(x1, x2) = θm sin
(πx1

L

) sinh(πx2/L)
sinh(πW/L)

(17)

The unstructured mesh used on the domain, in the case of 384 volumes, is shown
in Figure 2 (b). First, the numerical solutions, the global Root Mean Square (RMS)
errors and the global maximum errors are obtained for different mesh densities.
The results are presented in Table 1 where the convergence of the method can be
seen for the linear conduction problem.

The numerical results obtained for a mesh of 384 volumes are shown in Figure
3, on three domain lines with x1 constant. The relative error increases near
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Table 1: RMS and maximum error in the solution of linear heat conduction
problem.

Mesh size εmax εRMS

32 vol 0.0422 0.0165

100 vol 0.0245 0.0105

384 vol 0.0136 0.0042

882 vol 0.0053 0.0013
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Figure 3: Solution of the linear heat conduction problem, (a) temperature profile
on lines x2 =0.25 (♦), x2 = 0.50 (o) and x2 = 0.75 (+), (b) relative
error.

boundaries but its magnitude is not greater than 4%. According to these results, the
CV-RBF method can solve accurately the linear conduction problem with Dirichlet
boundary conditions.

4.2 Non-linear conduction

A hypothetical heat conduction situation is considered in a solid material with
a thermal conductivity in terms of temperature. The phenomena is modelled by
the equation (15) where θ = T − T1, k = T 1.3 and S is obtained by replacing
the imposed solution (18) on the governing PDE. The problem geometry and the
boundary conditions are the same as those presented in the Figure 2, with f(x1) =
T1.

T (x1, x2) − T∞ = 100 T∞x1x2(1 − x1)(1 − x2)e−(x2
1+x2

2) (18)

The numerical solution is obtained using the MQ function with m = 1 and a
shape parameter c = 0.1h, where h is the mean distance between central nodes
in the stencil. A 30 × 30 structured mesh is used in the solution. The Figure 4
shows the exact solution contour (left) and the numerical solution contour (right).
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Figure 4: Temperature contours for the non-linear heat conduction problem: (a)
analytical solution; (b) numerical solution.
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Figure 5: Comparison between analytical and numerical solution of the non-linear
heat conduction problem at the line x1 = 0.5: (a) temperature profile;
(b) relative error.

Also, the temperature profile and the relative error at the line x1 = 0.5 are shown in
Figures 5 (a) and (b), respectively. The figures mentioned show the good agreement
between the analytical and numerical solution. The relative error, as in the linear
case, increases near boundaries without exceeding 8%. This error is presented
locally and does not affect the global RMS error which is 0.54%.

4.3 Temperature profile in the plane Poiseuille flow

An incompressible Newtonian fluid flows in the x1 direction between two plates as
shown in Figure 6. A hydraulic developed flow in steady state and a field velocity
independent of temperature are assumed. According to this, the known velocity
field is the plane Poiseuille flow described by equation (19). The fluid selected is
air with constant properties and the maximum velocity is set to get a global Peclet
number close to 1200.
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Figure 6: Geometrical configuration for the heat transfer in plane Poiseuille flow.

u1(x2) = (u1)max

(
1 −

(
x2 − 0.5H

0.5H

)2
)

(19)

The governing equation is the expression (1) without including the source term.
The boundary conditions are given by the expressions from (20) to (22) and the
domain is divided by a 30 × 90 structured mesh. The MQ with m = 1 is used and
the shape parameter is computed as c = 0.1h. The analytical solution is known
as the Graetz problem in rectangular coordinates, but there is not a close form of
the solution. Therefore, the results are compared to those obtained by Divo and
Kassab [22] employing an RBF collocation method.

T (0, x2) = T0 (20)

T (x1, 0) = T (x1,H) = T1 (21)

∂T (L, x2)
∂x1

= 0 (22)

The thermal profile obtained is shown in Figure 7 (a). The temperature distri-
bution agrees with the physical phenomena involved here, since near the plates
the temperature is T1 and it increases to T0 close to the center line. In the Figure
7 (b) are presented the temperature profiles on several x1 constant lines and can
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Figure 7: Temperature profile in the plane Poiseuille flow: (a) Temperature con-
tour; (b) Temperature profiles at x1 constant lines.

178  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



be seen the agreement between the numerical results obtained and those found in
literature.

5 Conclusions

The heat equation was solved accurately for basic two-dimensional situations by
the CV-RBF method. This is a successful application of the method considering
the equations solved and the coupling to the Newton-Rapshon method.

The CV-RBF method is an improvement to the traditional FVM due to the
geometric treatment versatility. Both the results in unstructured and structured
meshes are in agreement to the reference data.

The MQ function with m = 1 was used to solve accurately the heat equation.
Although, the solution depends on the shape parameter and there is not all-purpose
values or expressions for it. Hence, obtaining the shape parameter is an aspect to
be improved in the method.

The main strengths of the CV-RBF method are the capability to deal with un-
structured meshes, the high order of the interpolation scheme and the intrinsic
upwind differencing.
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