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Abstract 

An efficient boundary element technique has been proposed to deal with a 
problem when geometry and boundary conditions have a rotational symmetry. In 
this technique, no boundary elements need to be defined on the symmetry 
surface. This idea has been applied to a problem of magnetic field in nuclear 
fusion plasma. A useful “linear transformation” for the rotational symmetry in 
the toroidal direction has been derived in terms of the x-, y- and z-components of 
vector potential in a 3-D Cartesian coordinate system. Applying this linear 
transformation to the discretized set of boundary integral equations, one can 
drastically reduce the size of matrix, the number of unknowns and then 
computing cost. Also, accurate solutions can be expected. Results of test 
calculations demonstrate the validity of the present formulation. 
Keywords: boundary element method, rotational symmetry, vector potential, 
linear transformation, nuclear fusion plasma, Cauchy condition surface method, 
magnetic sensor. 

1 Introduction 

The present work is a part of the authors’ research plan to develop an inverse 
analytic technique to identify the boundary shape of nuclear fusion plasma from 
signals of magnetic sensors located outside the plasma. For this purpose, the 
Cauchy condition surface (CCS) method [1] has already been established for a 
tokamak-type fusion device. The geometry of tokamak plasma is axisymmetric 
so that the analysis can be made in a 2-dimensional (2-D), r-z system. On the 
other hand, 3-D analyses are required for non-axisymmetric plasma, e.g., in a 
helical type device such as the Large Helical Device (LHD). The application of 
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the CCS method to a 3-D space analysis, however, becomes quite challenging 
because the 3-D system has a much larger number of unknowns than a 2-D 
system. 
     The authors have noticed that the LHD has a 1/5 rotational symmetry. In 
Section 2 of the present paper, an efficient boundary element technique is given 
for solving a simple potential problem having rotational symmetry. When there 
is an n-fold rotational symmetry, the system matrix becomes a cyclic one. 
Because of this, the number of unknowns is reduced to 1/n. In this case, no 
boundary elements need to be defined on the symmetry surface. 
     In Section 3, this idea is extended to nuclear fusion plasma that has a 
rotational symmetry in the toroidal direction. A useful “linear transformation” is 
derived in terms of the x-, y- and z-components of vector potential in a Cartesian 
coordinate system. Applying this linear transformation to the discretized set of 
boundary integral equations, one can reduce the number of unknowns and then 
computing cost dramatically. Also, accurate solutions can be expected. 
     Numerical examples are shown in Section 4 to demonstrate the validity of the 
present formulation to deal with the rotational symmetry. 

2 Rotational symmetry in a simple potential problem  

First of all, one here considers a simple potential problem. Corresponding to the 
2-D Laplace equation 
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the boundary integral equation is given by 
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which discretized form can be written in a matrix equation form [2] 

 Hu Gq . (3) 

     Here, the quantities u  and q  denote vectors of the Dirichlet condition u  and 

the Neumann condition /q u n   , respectively on the boundary  . 

     When the boundary   is divided into n  segments, ( 1 2, , , n   ), eqn (3) 

is given by 
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using submatrices ,i jH  and ,i jG . If there is an n-fold rotational symmetry in the 

geometry as well as the boundary conditions under consideration, one finds 

134  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



1 2 n  u u u  and 1 2 n  q q q . Also, the matrix on each side in eqn (4) 

becomes a cyclic one. That is, eqn (4) can be rewritten as 

 

1,1 1,2 1, 1,1 1,2 1,1 1

1, 1,1 1, 1 1, 1,1 1, 11 1
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. (5) 

     Equation (5) can then be simplified as 

 1,1 1, 2 1, 1 1,1 1, 2 1, 1{ } { }n n            H H H u G G G q  . (6) 

     Now the matrix size and the number of unknowns are reduced to 1/n2 and 1/n, 
respectively. It should be noted that in this case one need not to define any 
boundary elements on the symmetry surface, so that the periodic boundary 
conditions are naturally satisfied. 
     Suppose now J  mesh points, (1) (1)( , ), ( 1, 2, , )j jx y j J  , have been given 

for the boundary 1  to generate the submatrices 1,1H  and 1,1G . Other mesh 

point coordinates 
( ) ( )( , ), ( 2, 3, , ; 1, 2, , )k k
j jx y k n j J    

to compute 1,2 1,3 1,[ , , , ]nH H H  and 1,2 1,3 1,[ , , , ]nG G G  are calculated using 

the well-known linear transformation 
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 (7) 

with the angle 2 / n   and the rotation axis 0 0( , )x y , as shown in fig. 1. 

 

Figure 1: Boundary segmentation with n-fold rotational symmetry. 
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3 Rotational symmetry of 3-D vector potential 

The fundamental idea described in Section 2 is now applied to a problem of 
magnetic field in nuclear fusion plasma, which is described using vector 
potential in a 3-D space. This section describes how the rotational symmetry is 
introduced to reduce the number of unknowns in the 3-D CCS method formula-
tion that is given by a set of boundary integral equations for points along the 
CCS and for the magnetic sensor positions. The boundary integral equations 
formulated in this work are all described in a Cartesian coordinate system. The 
reason for this is given in the Appendix. An outline of 3-D CCS method is found 
in the literature [3]. 
 

 

Figure 2: Rotational transformation of vector potentials. 

3.1 Linear transformation of vector potential 

Now one describes the vector potential ( ) ( ) ( )( , , )k k k
x y zA A A  in the k-th segment in 

terms of the vector potential (1) (1) (1)( , , )x y zA A A  in the first segment. The relation-

ship between ( ) ( )( , )k k
x yA A  and ( ) ( )( , )k k

rA A  in the different coordinate systems are 

described using the toroidal angle ( )k , as 
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Considering the rotational symmetry, i.e., ( ) (1)k
r rA A  and ( ) (1)kA A  , one finds 
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With the relationship between (1) (1)( , )rA A  and (1) (1)( , )x yA A , eqn (9) becomes 
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This formula can be transformed into 
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using the “additional theorem” of trigonometric functions with a rotation angle 
     1k k     . 

Including the z-component, one finally obtains 
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This is the “linear transformation” from (1) (1) (1)( , , )x y zA A A  to ( ) ( ) ( )( , , )k k k
x y zA A A  in 

a Cartesian coordinate system. 

3.2 Application to boundary element equations in 3-D CCS method 

The set of boundary integral equations for the 3-D CCS method can also be 
transformed into a matrix equation 

 Hu Gq , (13) 

where 
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Here, ( ) ( ) ( )( , , )k k k
x y zA A A  means the set of all vector potentials within the k-th 

segment. The LHS of eqn (13), for example, can be written as 
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where L  denotes the number of lines that depends on the number of nodal points 
on the CCS and the number of magnetic sensors as well. Assuming an n-fold 
rotational symmetry, i.e., applying eqn (12) to the vector on the RHS in eqn (16), 

eqn (16) is described only using (1) (1),x yA A  and (1)
zA . For instance, the l th line of 

Hu  can be written in the form 
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The Gq  on the RHS of eqn (13) can also be rewritten in the same way. Both the 

numbers of columns and unknowns can be reduced to 1/ n  if only giving the 

rotational angle ( )k . 

     When a singular point i  is located on the CCS, the boundary integral 
equation for each of ,x yA A  and zA  holds independently, and all equations 

commonly use the same fundamental solution. Because of this, in eqn (16) the 
portion related to the CCS represents a 3 3n n  square matrix equation: 
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Then, introducing the rotational symmetry, eqn (18) can be simplified as 
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     Finally, the equations for points on the CCS as well as the ones for the 
magnetic sensor positions are solved simultaneously. Once all the values on the 
CCS are known, one can calculate the magnetic field for arbitrary points. 

4 Numerical example 

One here considers a problem to model the non-axisymmetric plasma in the 
LHD, a helical-type device. The three components of magnetic field in the LHD 
were reconstructed using the 3-D CCS method. As the magnetic field profile is 
not axisymmetric, this problem is challenging and requires a large number of 
unknowns. 
     The results were compared with the reference solution obtained using the 
HINT code [4]. Figure 3 shows an example of the reference solution obtained 
using the HINT code. This figure gives the contours of the r-component of the 
magnetic field rB  on the r-z plane at the toroidal angle of 18 deg. 

 

 

Figure 3: Reference profile of magnetic field rB  at 18 deg.   

     For inverse analyses, one here assumes that 20 magnetic flux loop sensors 
and 451 magnetic field sensors are arranged outside the plasma. Each of field 
sensors is hypothetically assumed to detect all of the three components of 
magnetic field. In this case the number of sensor signals is 451 3 20 1373   . 
A tube-shaped CCS was placed within a domain that can be supposed to be 
inside the actual plasma. 
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     First, a CCS that covers 360-deg. was divided into 160 boundary elements 
(Case A). As the number of unknowns, 8640, is larger than the number of 
equations, 5693, as shown in Table 1, it was impossible to solve this problem.  
     Next, considering a 1/5 rotational symmetry, only 72-deg. portion of the CCS 
tube was modelled and this portion was divided into 32 boundary elements (Case 
B). Figure 4 shows the reconstructed contours of the r-component of the 
magnetic field rB  on the r-z plane at the toroidal angle of 18 deg., which 

correspond to the reference contours in fig. 3. As the magnetic fields computed 
using the CCS method has no physical meaning inside the plasma boundary [3], 
they are not drawn inside the plasma in fig. 4. This reconstructed field profile 
agrees well with the reference one in fig. 3. 
 

Table 1:  Calculation condition for plasma in LHD. 

Case A B C 
Rotational symmetry 360-deg. 1/5 symmetry 360-deg. 
No. of sensor signals 1373 1373 1373 

No. of boundary elements 160 32 40 
No. of equations 5693 2237 2453 
No. of unknowns 8640 1728 2160 
Solution accuracy Not solved Acceptable Poor 

 
 

 

Figure 4: Profile of reconstructed magnetic field rB  at 18 deg.   (Case B). 
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     When one took only 40 boundary elements on the CCS for 360-deg. (Case C), 
the number of unknowns is of course smaller than that of equations. 
Unfortunately, however the accuracy of the reconstructed solution in this case 
was very poor, as shown in fig. 5. That is, without considering the rotational 
symmetry, it is difficult to realize a good accuracy in the 3-D analysis of non-
axisymmetric plasma, which requires a large number of unknowns. 
 

 

Figure 5: Profile of reconstructed magnetic field rB  at 18 deg.   (Case C). 

5 Conclusion 

An efficient boundary element technique has been applied to problems of 
magnetic field in 3-D nuclear fusion plasma that has a rotational symmetry in the 
toroidal direction. In this technique, no boundary elements need to be defined on 
the symmetry surface. The linear transformation in terms of the x-, y- and z-
components of 3-D vector potential plays an important role to reduce the matrix 
size and the number of unknowns in the discretized set of boundary integral 
equations. This enables one to realize not only the reduction of the computing 
cost but the improvement of numerical solution accuracy. 
     Results of test calculations for nuclear fusion plasmas in a helical-type device 
demonstrate the validity of the present formulation. It has been found that one 
should incorporate the rotational symmetry into the analysis of non-
axisymmetric 3-D plasma in order to obtain an acceptable accuracy of the 
solution. 

Plasma region z (m) 

r (m) 

Br (T) 
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Appendix: Why the boundary integral equations in this work 
are described in a Cartesian coordinate system? 

     The vector Laplacian in a Cartesian coordinate system has a simple 
relationship 
 2 2( ) ( , , )k kA k x y z   A . (A1) 

That is, the vector Laplacian can be given by a set of the scalar Laplacian of each 
Cartesian scalar component. In a cylindrical or a spherical coordinate system, on 
the other hand, the expression of the vector Laplacian is not so straightforward. 
In a cylindrical system, for example, the components of the vector Laplacian are 
written in complicated forms, as 

 2 2
2 2

2
( ) r

r r

A A
A

r r





    


A , (A2a) 

 2 2
2 2

2
( ) r

AA
A

r r


  


    


A  (A2b) 

and 
 2 2( )z zA  A . (A2c) 

     If one uses this coordinate system, the boundary integral equations 
corresponding to -r  and - components will include domain integral terms. To 

realize a boundary-only integral formulation, it is better not to use a cylindrical 
or a spherical system. Because of this, the authors adopt a 3-D Cartesian 
coordinate system for the analysis to obtain the 3-D distribution of vector 
potential. However, it is easy to transform the result, once calculated in a 
Cartesian coordinate system, into one in another coordinate system. 
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