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Abstract 

The assessment of current distribution induced along complex grounding 
systems has been undertaken using the corresponding antenna model and the set 
of Pocklington integro-differential equations for curved wires. The set of 
Pocklington equations is numerically handled via the Galerkin-Bubnov scheme 
of the Indirect Boundary Element Method (GB-IBEM) featuring the 
isoparametric elements. Some illustrative numerical results for the current 
distribution are presented in the paper. 
Keywords: boundary elements, antenna theory, set of Pocklington equations, 
grounding systems. 

1 Introduction 

The analysis of complex grounding systems being important component in 
lightning protection systems (LPS) is of great interest in electromagnetic 
compatibility (EMC) and high voltage (HV) engineering. In general, grounding 
systems can be analyzed using the transmission line model (TLM) [1, 2], which 
principle feature is simplicity, or the antenna model (AM) [3–5], which is 
considered to be the rigorous approach, (but at the same time much more 
demanding, regarding both the formulation and numerical solution. The key-
parameter in the antenna model is the equivalent current distribution flowing 
along grounding structures. Given the knowledge of the current distribution 
along the grounding system it is possible to determine other parameters of 
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interest, i.e. the scattered voltage, the input impedance and the transient 
impedance.  
     This paper represents an extension of the previous work of the authors on the 
subject which was related to the BEM analysis of a single grounding electrode 
[6, 7]. The antenna model of the grounding systems composed from straight 
conductors is based on the set of Pocklingtonʼs integro-differential equations for 
curved wires. The effect of a lossy ground is taken into account via the 
corresponding reflection coefficient [5] thus avoiding the rigorous approach based 
on the analytically demanding and numerically time consuming Sommerfeld 
integrals [8]. The set of Pocklington equations is numerically treated by means of 
the Galerkin-Bubnov scheme of the Boundary Element Method (GB-IBEM) with 
isoparametric elements [9]. Some illustrative numerical results for the current 
distribution along different grounding geometries are presented. 

2 Wire grid model of the grounding system 

The geometry of interest, shown in Fig 1, is the complex grounding system 
composed from interconnected conductors. 
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Figure 1: Geometry of a complex grounding system. 

     The set of Pocklington equiations for a configuration of interconnected buried 
wires can be obtained as an extension of the Pocklington equation for a single 
buried wire of arbitrary shape [7].  
     The Pocklington equation for a single grounding electrode can be derived by 
enforcing the continuity conditions for the tangential components of the electric 
field along the perfectly conducting (PEC) wire surface. An extension to the case 
of imperfectly conducting wire is straightforward [6, 7]. For the PEC wire the 

total field composed from the excitation field excE


 and scattered field sctE


 
vanishes: 
 

   0exc sct
xe E E  
 

   on the wire surface (1) 

     Starting from Maxwell’s equations and Lorentz gauge the scattered electric 

field can be expressed in terms of the vector potential A


: 
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which is defined by the particular integral: 

 *( ) ( ') ( , ', ) ' '
4 C

A s I s g s s s s ds



 
 

 (3) 

where I(s') is the induced current along the wire, and g(s,s') is the corresponding 
Green’s function of the form: 
 * *

0( , ', ) ( , ') ( , )ref ig s s s g s s g s s   (4) 

 
where g0(s,s`) denotes the lossy medium Green function, while gi(s,s`) arises 
from the image theory. These functions are given by: 
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and R1 and R2 are the distances from the source point to the observation point, 
respectively, while the propagation constant of the lower medium is defined as: 
 

 2
0rgj       (6) 

 

where rg  and   are the corresponding ground permittivity and conductivity, 

respectively. 
     The influence of a ground-air interface is taken into account via the reflection 
coefficient of the form [6]: 
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     The complex permittivity of the lossy ground eff is given by: 

 

 jreff  0  (8) 

 

     Combining equations (1)–(3) and performing some mathematical 
manipulation leads to the integro-differential equation of the Pocklington type 
for the unknown current distribution induced along the thin wire of an arbitrary 
shape buried in a lossy half-space [9]: 
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     An extension to the case of multiple wires buried in a lossy medium is 
straightforward and results to the set of coupled Pocklington equations: 
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where In(s') is unknown current distribution along the n-th wire, ( )exc
mE s  the 

excitation function on the m-th wire.  
     Finally, the grounding system is energized by the injection of the current source 
with one terminal connected to the grounding structure and the other one grounded 
at infinity [4]. Consequently, the left hand side of the equation (10) vanishes 
reducing the corresponding Pocklington equation to the homogenous one.  
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     This current source excitation is incorporated into formulation through the 
boundary conditions. 

3 Boundary element procedures  

The set of Pocklington integro-differential equations (11) is numerically handled 
by means of the Galerkin-Bubnov variant of Indirect Boundary Element Method 
(GB-IBEM). The Boundary Element solution technique used in this work is an 
extension of the method applied to single wire cases reported elsewhere, e.g. in 
[6, 7, 9]. 
     The unknown current  along the n-th wire segment is expressed by the sum of a 
linearly independent basis functions fni, with unknown complex coefficients Ini: 

      
1

' ( ')
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   (12) 
 

and the use of isoparametric elements yields: 
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where Ne is the number of local nodes on the element. 
     A linear approximation over a segment along n-the wire is used in this work 
as this choice was proved to be optimal in modeling of various wire structures 
[9]. The corresponding shape functions are given by: 
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     Applying the weighted residual approach with Galekin-Bubnov procedure 
(same test and basis functions) after performing a certain mathematical 
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manipulations, the following matrix equation is obtained the set of Pocklington 
equations is transformed into a system of algebraic equations: 

    ni
1 1

= 0,    m =1,2,...,
gw

NN
ji

wmn
n i

Z I N
 
  (15) 

where Nw is the total number of wires, Ng is total number of elements along the 

wire grid. Mutual impedance   ji

mn
Z represents the interaction between different 

wire segments is given by: 
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     Matrices {f} and {f'} contain the shape functions while {D} and {D'} contain 
their derivatives, and ∆li, ∆lj are the widths of i-th and j-th boundary elements. 
The implementation of isoparametric elements gives: 
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     The current source Ig is taken into account as a forced boundary condition at the 
certain node i  of the grounding system: 

 i gI = I  (18) 

     The treatment of wire junctions is related to the Kirchhoff’s current law in its 
integral and differential form, respectively, related to continuity of currents and 
charges at the junction.  

4 Numerical results  

Some typical grounding configurations regarding two-wire junctions and three-
wire junctions are analyzed. In all cases the unit current source is given by: 
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 01 j
gI = e  (19) 

4.1 Two-wire junction 

The grounding system in the form of two wire junction is shown in Fig. 2. In 
Figs 3 to 7 the current distribution along the two horizontal grounding electrodes 
is presented.  
     Fig. 3 is related to two 6m long electrodes (L1=L2=6m), with radius a= 5mm, 
the burial depth d=0.5m, ground permittivity εr=10, and specific resistance ρ= of 
100Ωm. The frequency is f=10MHz.  
 
 

 
 

Figure 2: Two-wire junction energized by the current source. 
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Figure 3: The current distribution along the two-wire junction: L1=6m, 
L2=6m, d=0.5m, εr=10, ρ=100Ωm, f=10MHz. 

 
     Fig. 4 shows the current distribution along the two electrodes of different 
length (L1=4m, L2=8m)while the other parameters are the same.  
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     Figure 5 shows the induced current distribution along the two 6m long 
electrodes for the case of higher specific resistance ρ=5400Ωm, while the other 
parameters are the same. 
     Figures 6 and 7 show the induced current distribution along the two 
electrodes of different length; L1=4m, L2=8m, and L1=3m, L2=9m, the specific 
resistance is ρ=5400Ωm, while the other parameters are the same. 
     The effect of the different electrode lengths and different values of ground 
specific resistance is clearly visible. 
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Figure 4: The current distribution along the two-wire junction: L1=4m, 
L2=8m, d=0.5m, εr=10, ρ=100Ωm, f=10MHz 
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Figure 5: The current distribution along the two-wire junction: L1=6m, 
L2=6m, d=0.5m, εr=10, ρ=5400Ωm, f=10MHz. 
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Figure 6: The current distribution along the two-wire junction: L1=4m, 
L2=8m, d=0.5m, εr=10, ρ=5400Ωm, f=10MHz. 
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Figure 7: The current distribution along the two-wire junction: L1=3m, 
L2=9m, d=0.5m, εr=10, ρ=5400Ωm, f=10MHz. 

 

4.2 The three-wire (T and Y) junctions 

Next set of computational examples is related to grounding systems in the form 
of T-junction and Y-junction, Fig. 8. The ground permittivity is εr=10, specific 
resistance ρ= 1000Ωm, the burial depth d=0.5m and the frequency is f=10MHz.  
     The current distribution along the T-shaped grounding is shown in Fig. 9, 
while the Y-shaped grounding system is presented in Fig. 10.  
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a) T- junction                                         b) Y-junction 

Figure 8: The three wire junction energized by th ecurrent source. 

 
 
 
 
 
 
 
 
 

 
 

a) L1=1.5m                                             b) L2=0.5m 

Figure 9: The current distribution along the T- junction. 

 
 
 
 
 
 
 
 
 
 
 

a) L1=1.5m                                                   b) L2=0.56m 

Figure 10: The current distribution along the Y- junction. 
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5 Concluding remarks 

The paper deals with an assessment of the current distribution along the complex 
grounding systems composed from interconnected conductors. The formulation 
is based on the wire antenna theory and the related set of Pocklington integro-
differential equations for wires of arbitrary shape. The set of Pocklington 
equations are numerically handled by using the Galerkin-Bubnov scheme of the 
Indirect Boundary Element Method (GB-IBEM). Some illustrative numerical 
results are presented in the paper.  
     Future work will involve the calculation of scattered voltage, input impedance 
and transient impedance for the case of complex grounding systems including 
interconnected conductors. 
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