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Abstract

A method for the inverse scattering analysis is presented for an elastic half space.
The volume integral equation method is introduced here to reconstruct fluctuation
of the medium from scattered waves observed at the free surface. The Born
approximation is applied to the volume integral equation to formulate the equation
for the inverse scattering analysis. The equation is solved by means of the Krylov
subspace iteration method and the fast generalized Fourier transform. Several
numerical calculations are carried out to investigate the solutions of the inverse
scattering analysis.
Keywords: inverse scattering problem, volume integral equation, elastic half
space, fast generalized Fourier transform, Krylov subspace iteration method, Born
approximation.

1 Introduction

The analysis of scattered waves is an important issue in fields such as earthquake
engineering, non-destructive testing and identification of energy resources. The
integral equation methods have been efficient tools for both the forward and
inverse scattering analysis. For example, Colton and Kress (1998) presented a
survey of a vast number of articles on forward and inverse scattering analyses [1].
Among the integral equation methods, the volume integral equation known as the
Lippmann-Schwinger equation has an advantage in that it presents a mathematical
relationship between the fluctuation of the medium and scattered wave field. As a
result, a number of examples of applications of the volume integral equation are
increasing recently in spite of its deficiency, that is the requirement of a huge scale
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and dense matrix for numerical analyses. Several methods for the volume integral
equation presented recently are aimed to resolve the deficiency of the volume
integral equation (for example, [2–4]). Even in this situation, application of the
volume integral equation to inverse scattering analysis of an elastic half space is
still a task for the future.

In this article, a method for inverse scattering analysis is presented for an
elastic half space by means of the volume integral equation. The inverse scattering
analysis here is to reconstruct fluctuation of the medium from the scattered waves
observed at the free surface. The formulation is carried out by applying the Born
approximation to the volume integral equation. As a result, the equation is obtained
for the reconstruction of fluctuation of the medium from scattered wave field. The
introduction of the fast generalized Fourier transform [5] and the Krylov subspace
iteration method [6] enables us to solve the equation. Several numerical examples
by means of the proposed method are presented in this article.

2 Theoretical formulation

2.1 Problem dealt in this article

Consider a scattering problem shown in Fig. 1, in which a point source is applied
to a free surface of an elastic half space. The wave field has a localized fluctuation
and scattered waves are caused due to an interaction between the incident waves
and fluctuation of the medium. The problem of this article is to reconstruct the
fluctuation by means of scattered waves. We assume that the back ground structure
of the wave field is already provided for the analysis.

According to Fig. 1, the set of the points for grids to observe the scattered waves
is denoted by ΓO and those to reconstruct the fluctuation is denoted by ΓR. To set
up ΓR, the properties of the waves due to a point source is used here. As shown in
later, the waves due to a point source propagating to downward direction are found

Figure 1: Concept of the scattering problem.
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to exhibit a strong directionality. Therefore, by means of the position of the point
source and the intensity of the scattered waves observed at the free surface, it is
possible to set up grids for ΓR. This concept is also described in Fig. 1.

The fluctuation of the medium is defined by the Lamé constants and the mass
density such that

λ(x) = λ0 + λ̃(x)

μ(x) = μ0 + μ̃(x)

ρ(x) = ρ0 + ρ̃(x), (x ∈ R
3
+) (1)

where x ∈ R
3
+ is the spatial point, λ0, μ0 and ρ0 are the background constants

of the Lamé and mass density and λ̃, μ̃ and ρ̃ are their fluctuations. Note that the
components of x ∈ R

3
+ are expressed by

x = (x1, x2, x3) ∈ R
3
+ (2)

where x3 is the vertical coordinate with the positive direction downward and the
free boundary is defined by x3 = 0.

The inverse scattering analysis dealt in this article can now be stated as follows:

Definition 1 The inverse scattering analysis is to reconstruct the fluctuation of the
medium λ̃, μ̃ and ρ̃ at ΓR from information about the scattered waves observed at
the grids ΓO, the background structure of the medium and the incident wave field.

2.2 Volume integral equation

The volume integral equation for the scattering problem shown in Fig. 1 is
described as [4]

ui(x) = −
∫
R

3
+

gij(x, y)Njk(y)u
(I)
k (y, xs)dy

−
∫
R

3
+

gij(x, y)Njk(y)uk(y)dy, (x ∈ R
3
+) (3)

where ui is the scattered wave field, gij is the Green’s function for an elastic half
space due to the background structure, Nij is the differential operator constructed

by the fluctuations of the medium, u(I)i is the incident wave field caused by a point
source and xs is the spatial point where the point source is applied. The subscript
indices i, j and k for Eq. (3) denotes the components of the vectors or tensors to
which the summation convention is applied.

The Green’s function for an elastic half space used for the integral equation is
defined by(

(λ0 + μ0)∂i∂j + δijμ0∂l∂l + δijρ0ω
2
)
gjk(x, y) = −δikδ(x − y) (4)
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Pijgjk(x, y) = 0 at x3 = 0 (5)

where ∂ is the partial differential operator, δij is the Kronecker delta, ω is the
circular frequency, and Pij is the differential operator expressed as

[Pij ] =

⎡
⎢⎣
μ0∂3 0 μ0∂1

0 μ0∂3 μ0∂2

λ0∂1 λ0∂2
(
λ0 + 2μ0

)
∂3

⎤
⎥⎦ (6)

For numerical analysis here, the Green’s function defined by Eqs. (4) and (5) is
constructed by the fast generalized Fourier transform. By means of the Green’s
function, the incident wave field is calculated such that

u
(I)
k (x, xs) = gkl(x, xs)βl (7)

where βl is the force vector of the point source. In addition, the explicit form of
the differential operatorNij in Eq. (3) is expressed by

Nij(x) = −
(
λ̃(x) + μ̃(x)

)
∂i∂j − δij μ̃(x)∂k∂k

− ∂iλ̃(x)∂j − δij∂kμ̃(x)∂k − ∂j μ̃(x)∂i − δij ρ̃(x)ω
2 (8)

2.3 Method for the inverse scattering analysis

At this stage, let us modify the volume integral equation into that represents the
relationship between the observed scattered waves at ΓO and fluctuation of the
medium at ΓR. Application of the Born approximation to the volume integral
equation shown in Eq. (3) yields

ui(x) = −
∫
R

3
+

gij(x, y)Njk(y)u
(I)
k (y, xs)dy (9)

The right side of Eq. (9) can be modified so that the unknown quantities are the
fluctuation of the medium. Let qk be the component of the states vector with
respect to the fluctuation of the medium such that

(qk) =
(
λ̃ μ̃ ρ̃

)T

(10)

Then, Eq. (9) becomes as follows:

ui(x) =

∫
R

3
+

gij(x, y)Mjk(y, xs)qk(y)dy (11)

whereMij is the operator including the effects of the incident wave field, which is
defined by

Njk(y)u
(I)
k (y, xs) = −Mjk(y, xs)qk(y) (12)
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The explicit form of Mjk is expressed as

[Mjk] =

⎡
⎢⎣
∂1Ell + Ell∂1 ∂1Ell + η1 + 2E1l∂l ω2u

(I)
1

∂2Ell + Ell∂2 ∂2Ell + η2 + 2E2l∂l ω2u
(I)
2

∂3Ell + Ell∂3 ∂3Ell + η3 + 2E3l∂l ω2u
(I)
3

⎤
⎥⎦

(13)

where E and η in Eq. (13) are defined by

Eij = (1/2)
(
∂iu

(I)
j + ∂ju

(I)
i

)
Ell = E11 + E22 + E33

ηj =
(
∂21 + ∂22 + ∂23

)
u
(I)
j (14)

Note that the summation convention is applied to the subscript index l in Eq. (13).
At this stage, the generalized Fourier and its inverse transforms are applied to

Eq. (11). In addition, assume that

qk(y) = 0, (y ∈ R
3
+ \ ΓR) (15)

x ∈ ΓO (16)

for Eq. (11). Then, Eq. (11) becomes the equation for the inverse scattering
analysis, which is in the following form:

ui(x) = U −1
ij ĥ(ξ)UjkMkl(y, xs)ql(y), (x ∈ ΓO), (17)

where U and U −1 are the operators for the generalized Fourier and its inverse
transforms, respectively, and ĥ is the function related to the generalized Fourier
transform of the Green’s function expressed by

ĥ(ξ) =
1

μ0ξ23 − ρ0ω2 + iε
(18)

where ε is an infinitesimally small positive number and ξ is the wavenumber vector
having components

ξ = (ξ1, ξ2, ξ3) ∈ σp ∪ σc ⊂ R
3
+ (19)

Note that σp and σc are the set of the wavenumber for the Rayleigh and the body
waves, respectively. The detail of the discussions for these sets are given in the
article [4].

Now, we can solve Eq. (17) by means of the fast generalized Fourier transform
and the Krylov subspace iteration method. Note that the present method does not
require the derivation of a coefficient matrix. During the iterative process, only the
discretized transforms are repeatedly used for the analysis.
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3 Numerical examples

3.1 Analyzed target model and incident wave

Preliminary to carry out an inverse scattering analysis, let us set up a target model
for the analysis. The back ground Lamé constants and mass density for the model
are λ0=4.0 GPa, μ0=2.0 GPa and ρ0=2.0 g/cm3, respectively. Namely, the P wave
velocity for the back ground structure of the wave field is 2 km/s and the S wave
velocity for that is 1 km/s. The fluctuation of the medium defined by λ̃ and μ̃ is
shown in Fig. 2(a). The fluctuation of the Lamé constants are in the form of a cube
whose amplitudes are 0.2 GPa. In addition, the fluctuated area is embedded at the
depth of 3.0 km from the free surface.

An incident wave field used for the analysis is shown in Fig. 2(b), that is
constructed by the fast generalized Fourier transform. For the discretization of the
generalized Fourier transform, the intervals of the grids in the space domain and
the number of grids for the j-th coordinate (j = 1, 2, 3) are set by Δxj = 0.25 km
and Nj = 256, respectively. The amplitude of the point source for the incident
wave field is 1.0 × 1010 N, whose direction is in vertical, and the excitation
frequency is 1.0 Hz. As can be seen in Fig. 2(b), the high displacement amplitudes
areas can be seen along the free surface as well as downward directions from the
free surface. These areas are corresponding to the Rayleigh and the body waves,
respectively. The body waves propagating to downward direction are found to
show the strong directionality and expected to interact with the fluctuation of the
medium.

Figures 3(a) and (b) show the propagation of scattered waves at the free surface
and the amplitude of the scattered waves in x1−x3 plane, respectively. According
to Fig. 3(a), the displacement of the scattered waves are larger in the forward
region of the fluctuation of the medium. In addition, some spots showing larger

[GPa]

-15 -10 -5  0  5  10  15
x1[km]

 0

 5

 10

 15

 20

 25

 30

x 3
[k

m
]

 0

 0.05

 0.1

 0.15

 0.2

(a) fluctuations of λ̃ and μ̃
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Figure 2: Fluctuation of the medium and incident wave field.
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(b) displacement amplitudes
in the vertical plane

Figure 3: The result of forward scattering analysis. The displacement of the
scattered waves are shown.

displacement can be seen in the forward region of the fluctuation. These spots
are caused due to the reflection of the body waves from the fluctuation of the
medium, from which the directionality of the body waves can be recognized. It is
also found from Fig. 3(b) that the outstanding of the displacement amplitudes in
the forward direction also can be seen. The displacement amplitudes in the vertical
plane is found to be much larger than that in the free surface. This indicates that the
refection of the body waves from the fluctuated area to the free surface is not very
large when compared to the scattered waves propagating to downward direction
from the fluctuation of the medium.

3.2 Examples of the inverse scattering analysis

At this stage, let us reconstruct the fluctuation of the medium. Figures 4(a) and (b)
show a range of data sampling of scattered waves at the free surface and the results
of the reconstruction of μ̃ at the depth of 3 km from the surface. Likewise, Figs 5(a)
and (b) also show a range of data sampling and the results of the reconstruction of
μ̃ at the depth of 3 km. The differences of the data samplings between Figs. 4 and
5 are that Fig. 4 takes the data of scattered waves of the forward direction while
Fig. 5 takes those of the backward direction.

It is found from Fig. 4(b) that the highest amplitude of the estimated fluctuation
is 2.0 GPa. Since the target of the fluctuation was 0.2 GPa as shown in Fig. 2(a), the
estimation of the fluctuation is higher here. According to the estimation shown in
Fig. 5(b), the highest amplitude is 5.0 GPa. In this case, the estimated fluctuation
is much higher than that shown in Fig. 4. Namely, the discrepancy between the
target and estimation of the fluctuation increases in Fig. 5. The reason for this
is clearly due to the properties of the sampled scattered waves, which convey the
information for the fluctuation of the medium. These results indicate that sampling
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(a) range of the data sampling
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(b) reconstruction of μ̃
at the depth of 3 km

Figure 4: The result of inverse scattering analysis.
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(a) range of the data sampling
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(b) reconstruction of μ̃
at the depth of 3 km

Figure 5: The result of inverse scattering analysis.

of the scattered waves should be in the forward direction of the fluctuation. Note
that the accuracy of the reconstructed fluctuation here has to be improved for the
future. We have to examine the effects of the excitation frequency, the intervals of
the grids, number of data sampling and among others.

The numerical calculations were carried out by a computer with an AMD
Opteron 2.4 GHz processor. The CPU time needed for the present example based
on the Bi-CGSTAB method was around 150 min, in which the number of the
iterations was 10 times to obtain the results.
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4 Conclusion

This article presented a method for inverse scattering analysis based on the volume
integral equation method. The Born approximation was applied to the volume
integral equation to obtain the equation for the inverse scattering analysis, which
connected the scattered waves observed at the free surface and fluctuation of the
medium. The equation was solved by the fast generalized Fourier transform and
the Krylov subspace iteration method. Several numerical calculations were carried
out to examine the solutions of the inverse scattering analysis. According to the
numerical calculations, the amplitude of the estimated fluctuations of the medium
were higher than that of the target. Properties of the sampled scattered waves were
found to affect significantly to the results of the reconstruction of the fluctuation.
Improvements of the accuracy of the results are the task for the future.
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