
An efficient FEM-BEM procedure for the
multi-frequency acoustical analysis of lined
ducts containing passive components

R. Maréchal, E. Perrey-Debain, J.-M. Ville & B. Nennig
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Abstract

This paper deals with strategies for computing efficiently the propagation of sound
waves in ducts with acoustic lining at its walls. Although efficient, these treatments
seem to have reached their limit and there is still a need for considering other pas-
sive techniques to reduce further the sound radiation at the duct exit. In most cases
of practical interest, these added acoustics components can be modeled as acous-
tic cavities, which are connected to the duct and can be either purely reactive or
dissipative. The assessment of the efficiency of such a system requires a precise
knowledge of the acoustic field in the duct. Although standard Finite Element (FE)
software could, in principle, be used for this purpose, a full FE model would be
extremely demanding, particularly in the mid-frequency range and this can have
a negative impact when, for instance, some efficient optimizations are needed. In
the present work, we present a new numerical procedure that judiciously exploits
the benefit of the FEM and the BEM approach. Firstly, a set of FE eigenmodes
are computed in the cavity to produce a numerical impedance matrix connecting
the pressure and the acoustic velocity on the duct wall interface. Then an integral
representation for the acoustic pressure in the main duct is used. The presence
of acoustic liners on the walls of the duct is taken into account via an appropri-
ate modal decomposition of the Green’s function. Typical applications involving
Helmholtz resonators and Herschel-Quincke tubes are presented. We show that our
algorithm allows a very fast and accurate computation of the scattering matrix of
such a system with a numerical complexity that grows very mildly with the fre-
quency.
Keywords: impedance matrix, modal decomposition, lined duct, green’s function,
integral equations.
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1 Introduction

In a large number of sound generating devices, sound waves of large amplitude are
being set up inside a tube and some of the acoustic energy propagates in the duct
before being radiated into the open. The practical applications of such systems
range from noise transmission in vehicle exhaust systems, through ventilation and
air conditioning ducts, to sound propagation in the ducted regions of turbofan air-
craft engines.

The acoustic energy flow reduction techniques for the duct noise problem can be
divided into two categories. Reactive techniques specifically aim to alter the duct
impedance by reflecting back most of the incident acoustic wave. In most cases of
practical interest, these acoustics components can be modeled as acoustic cavities,
which are connected to the duct. Dissipative techniques specifically aim to absorb
the sound field as it propagates down the duct. These most commonly take the
form of a lining material (porous and/or perforate metal panel) placed on the walls
of the duct. While these absorbent materials are known to be typically effective at
relatively high frequencies, reactive techniques are best applied to low frequency
noise problems. For these reasons, these techniques seem to have reached their
limit when used on their own and there is still a need to consider the benefit of these
two combined in order to reduce further the sound radiation at the duct exit. The
assessment of the efficiency of such a system requires a precise knowledge of the
acoustic field in the duct. Although standard Finite Element (FE) software could, in
principle, be used for this purpose, a full FE model would be extremely demanding
as the number of variables is expected to grow like fd (f is the frequency and
d = 2, 3 the dimension of the discretized domain). To make the matter worse,
the FE method is known to suffer from pollution errors, which can be avoided
at the price of a very high discretization level, particularly in the medium and
high frequency range [1]. This can have a negative impact when some efficient
optimizations (geometry and positions of these added components for instance)
are needed.

In this work, we present a new numerical procedure that judiciously exploits the
benefit of the FEM and the BEM approach. The idea relies mainly on the concept
of an impedance matrix that connects the pressure to the acoustic normal velocity
on the duct-cavity interface. This considerably reduces the number of variables
as only the interface needs to be discretized. The technique is based on the use
of integral equations for the acoustic pressure with appropriate Green’s functions.
The theory is presented in Sections 3 and 4. The last section shows practical appli-
cations involving Helmholtz resonators [2] and Herschel-Quincke tubes [3]. The
benefit of the present approach is shown both in terms of CPU time and model
reduction, when compared to standard FE models.

2 Problem statement

The problem under consideration is illustrated in Fig. 1. It consists of a two-
dimensional lined main duct (domain Ω) of height h which is connected to a single
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cavity Ωc. The inlet and outlet pipes (regions I and II) are identical, each having
rigid walls at its boundaries Γw. We wish to evaluate the scattering matrix (or S-
matrix) of this acoustic system, that is given incident pressure waves P+

I and P−
II ,

we compute the scattered waves P−
I and P+

II . We call Γ1 (resp. Γ2) the lined wall
of the main duct with impedance Z1 (resp. Z2).

In the main duct, the acoustic pressure p satisfies the Helmholtz equation

Δp+ k2p = 0. (1)

On the lined walls, a local impedance condition is prescribed:

Zi =
1
Yi

=
p

v · n , i = 1, 2. (2)

Note the impedance is generally function of the frequency and the acoustic normal
velocity is proportional to the pressure gradient, i.e. ∂np = iωρv · n where n
is the outward unit normal. Here, we adopt the e−iωt -convention, k = ω/c is
the wave number, c the celerity, ω the angular frequency, ρ the fluid density. The
transmission conditions at the artificial boundaries ΓI and ΓII are given from the
pressure wave field in the inlet and outlet pipes. This is expressed as the usual
modal series

P±
j =

∞∑
m=0

A±
j,mψ

0
m(x)e±iβ0

mz (3)

where j =I or II. Here the pair (ψ0
m, β

0
m) defines the classical propagative (or

evanescent) mode in the rigid pipe (the superscript 0 refers to the rigid wall case).
Finally, we require that p and its normal derivative (i.e. the normal velocity) to be
continuous across the duct-cavity interface Γ.

3 Impedance matrix: general theory

To simplify the analysis, we will consider a cavity filled with air and acoustic losses
can be taken into account via a locally reacting treatment on the cavity wall. Let
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Figure 1: Main duct with a single passive component.
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us first assume that the acoustic cavity Ωc is closed, that is we enforce Neumann
rigid boundary conditions on the apertures Γ. Standard results show there exists
a complete set of orthogonal eigenfunction Φn belonging to the spectrum of the
Laplacian operator (see [4])

ΔΦn = −k2
nΦn, (4)

subject to the boundary conditions: ∂nΦn = 0 on the apertures Γ and ∂nΦn =
iρωYcΦn everywhere else. Here, Yc denotes the complex wall admittance and ∂n

denotes differentiation along the outward normal to the cavity. An important fact to
keep in mind is that the boundary conditions depends on frequency (except in the
limiting case of rigid walls) so that the set of eigenfunctions Φn and eigenvalues
kn also are functions of ω. Now, any given pressure field in Ωc can be written as
a weighted sum of the eigenfunctions. In particular, the Green’s function for the
cavity, which satisfies

ΔGc + k2Gc = −δ(x − y), (5)

is given by the infinite series

Gc(x,y, ω) =
∞∑

n=0

Φn(ω,x)Φn(ω,y)
ω2 − ω2

n

, (6)

where for the sake of clarity, we put ωn = kn(ω)c. Eigenfunctions are properly
normalized so that application of the Green’s theorem in the cavity yields the stan-
dard result

p(x) =
∫

Γ

Gc ∂npdγ(y). (7)

Note that this integral formulation is not only valid for any point x inside the cavity
but also on the boundary Γ. Collocating (7) on Γ leads, after discretization, to the
linear system

pint = Z(ω) F̃ ∂npint. (8)

Here, the vector pint (resp. ∂npint) simply contains the discrete nodal values of
the pressure (resp. normal derivative pressure) on the duct-cavity interface and, in
this context, the frequency-dependent matrix Z can be interpreted as an impedance
matrix. The matrix F̃ stems from discretization of the boundary integral, its exact
from is not essential for the moment but we will comment on this further on.
Without loss of generality, it is easy to see from (6), that this matrix admits the
following truncated eigenmode decomposition

Z(ω) =
(
Φ̃D(ω) Φ̃T + R(ω)

)
. (9)

The matrix Φ̃ = (Φ̃1 · · · Φ̃N ) contains in its columns the nodal value of the eigen-
functions Φn (n = 0, 1, . . . , N ) and D stands for the diagonal matrix with its
diagonal entries: (ω2

n − ω2)−1. Here the tilde symbol means that we only retain
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the nodal values of these eigenmodes on the duct-cavity interface Γ. The interest
for the decomposition (9) becomes clearer when the frequency of interest is taken
well below the highest modal ‘resonant’ frequency (i.e. |ω − ωN |−1 � 1). In
this frequency range, the correction term R is generally weakly dependent on the
frequency, so we can take the low order Taylor expansion

R(ω) ≈ R(ω) + (ω − ω)
∂R
∂ω

(ω) + . . . (10)

where ω is a reference value to be givenly precisely later. Once the matrix R(ω)
and its derivatives have been stored, the computation of (9) becomes a very fast
and simple procedure. Its efficiency relies on the numerical computation of a suf-
ficiently large set of eigenfunctions as well as finding the residual matrix. In this
work, a finite element strategy is used to discretize the exact geometry of the cav-
ity so that no assumption is made a priori regarding the shape of the acoustic
eigenmodes. We consider a finite element mesh made of linear elements (two-
dimensional triangles) and we denote by φi the associated piecewise linear shape
function. Standard procedure leads to the following algebraic eigenmode problem:

(
K + C(ω) − ω2

nM
)
Φn = 0 (11)

where matrices involved are obtained from

(K)ij =
∫

Ωc

∇φi∇φj dΩ (M)ij =
1
c2

∫
Ωc

φiφj dΩ, (12)

and

(C(ω))ij = −iρω
∫

∂Ωc\Γ
Yc(ω)φiφj dγ. (13)

Equation (11) constitutes a generalized eigenvalue problem. Depending on the ma-
trix size (i.e. the number of FE nodes in the whole cavity) and the number of modes
retained in the series, the evaluation of the impedance matrix might be computa-
tionally expensive as this needs to be done for each frequency. This point will be
discussed at the end of the section.

At this stage, we shall simplify the analysis a bit further by considering rigid
boundary conditions only (i.e. we put Yc = 0). In this case, the problem becomes
linear in λ = ω2, i.e.

A0(λ0
n)Φ0

n = 0 where A0(λ) = K − λM. (14)

Here the superscript 0 refers to the rigid wall case. A first set of mode (n =
0, 1, . . . , N ) is then computed using appropriate large sparse eigenvalue problem
solvers where it is understood that the truncation order N is taken well below the
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FE matrix size. Now, finding the residual matrix is a bit more tricky as we first
need to go back to original direct problem:

A0(λ)p = F ∂npint, (15)

where the vector p contains the value of the pressure at all nodes of the FE mesh.
To ease the demonstration, we proceed to an appropriate elements reordering so
that the rectangular matrix F looks like

F =

(
F̃

0

)
= IΓF̃ with (F̃)ij =

∫
Γ

φiφj dγ. (16)

Here IΓ denotes the identity matrix for nodes on the interface only. Inverting (15)
shows that the impedance matrix has the alternative form

Z0(λ) = IT
Γ A−1

0 (λ) IΓ (17)

The residual matrix is then computed simply via

R0 = Z0 − Φ̃0 D
(
Φ̃0
)T

(18)

and the first order derivative can be computed from

∂R0

∂λ
= IT

Γ A−1
0 MA−1

0 IΓ − Φ̃0 ∂D
∂λ

(
Φ̃0
)T

. (19)

Note that (i) the ω-derivative is recovered from ∂λR0 = 2ω∂ωR0 and (ii) the λ-
derivative of the diagonal matrix D is an easy task as eigenvalues λ0

n = (ω0
n)2 are

frequency-independent in the rigid wall case. Now exploiting the symmetry of A0,
we see that IT

Γ A−1
0 = (A−1

0 IΓ)T. Thus the important point to make is that the full
inversion of A0 is not needed here. Only the first columns of A−1

0 corresponding
to the interface nodes are active and these can be efficiently computed by solving
successively A0vi = ei with appropriate sparse solvers (ei is the column vector
with zero elements with the unity on the ith line). It is clear that the reference value
λ must be chosen away from the resonant value λ0

n to guarantee that the inversion
of A0 is not spoiled by round off error. In this work we take λ = λ0

1/2 (the value
λ = λ0

0 = 0 is proscribed here as it corresponds to the rigid motion resonance).
Now going back to the more general frequency dependent problem (11), the

large size matrix system can be considerably reduced by searching the lossy eigen-
mode in the basis of the rigid modes, i.e.

Φn = Φ0qn. (20)

Now by construction we have that

(
Φ0
)T

MΦ0 = I and
(
Φ0
)T

KΦ0 = Λ0, (21)
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where Λ0 is a diagonal matrix containing the rigid wall eigenvalues λ0
m m =

0, 1, . . . , N in ascending order. The eigenvalue problem becomes(
Λ0 +

(
Φ0
)T

C(ω)Φ0 − ω2
n

)
qn = 0. (22)

Note that in most cases, high order modes are expected to behave almost like rigid
wall modes (i.e. ω2

n → (ω0
n)2 and Φn → Φ0

n as n increases) and the matrix C(ω)
can be treated as a perturbation term [4], this fact will be illustrated in the next
section. Finally, the residual matrix is obtained following the same procedure from

Z(ω) = IT
Γ A−1(ω) IΓ with A(ω) =

(
K + C(ω) − ω2M

)
. (23)

The first order derivative matrix is more difficult to obtain as all quantities involved
are now frequency dependent and this will not be dealt with here.

4 S-matrix of the acoustic system

In the main duct, the theory starts by introducing the lined-walled duct Green’s
function satisfying the usual modal radiation condition on both ends of the main
duct, i.e.

G(x,x0) =
∞∑

n=0

ψn(x)ψn(x0)
−2iβn

eiβn|z−z0| (24)

where x = (x, z) and x0 = (x0, z0) are two points in the propagative domain Ω.
Function ψn is the transverse mode, i.e.

ψ′′
n + α2

nψn = 0 (25)

and satisfying the lined-wall conditions (2) on both sides x = 0 and x = h (here
the prime signifies derivation with respect to the transverse coordinate x). Again,
such an eigenmode problem could be solved using FE techniques. However, an
analytical approach is adopted here. It suffices to look for solutions of the form
ψ = A cos(αx) + B sin(αx). The transverse ‘resonant’ wavenumbers are found
so that the 2 × 2 system

M(α)

(
A

αB

)
= 0 (26)

admits non trivial solutions. It is more convenient for the analysis to search the
axial wavenumber β, so we put α =

√
k2 − β2 and solve the dispersion equation

g(β) = det M(
√
k2 − β2) = 0. (27)

Using the fact that g is analytic over the complex plane (in β), low order modes
are numerically calculated with a technique described by Kravanja and Van Barel
[5] and already used by the authors for the modeling of dissipative silencers [6].
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Higher order modes are recovered using asymptotic expansions. This is easily
achieved by expanding the transverse wavenumbers as the truncated series

αnh = α0
nh+

K∑
k=1

ak

nk
, (28)

where α0
n = nπ/h are the transverse wavenumbers of the rigid wall duct. This

simple example reveals that lined wall modes behave almost like the rigid ones
when n is taken sufficiently large. In our applications, we observed that n > 10
was a sufficient condition for the series (28) to converge quickly with a relatively
small number of terms (K = 5).

Using the Green’s theorem, the pressure anywhere in the lined duct (Ω domain)
is given via the integral representation

p =
∫

ΓI∪ΓII

(G∂np− p ∂nG) dγ +
∫

Γ

G (∂np− iρωY2p) dγ.

The discretization of this equation is carried out in two steps. First, collocating
(29) at the FEM nodes of the duct-cavity interface leads to

KΓ,Γ ∂npint + KΓ,I A
−
I + KΓ,II A

+

II = FΓ,I A
+

I + FΓ,II A
−
II (29)

where vectors A±
j contain the modes amplitudes A±

j,m, (j=I,II). The first block
matrix

KΓ,Γ = −Z(ω) F̃ − G − iρωY2GZ(ω) F̃ (30)

stems from the self interaction of the acoustic pressure at the interface. Here the
Green matrix G stems from the discretization of the second integral in (29). Other
matrices are built by simply substituting p = P

+

j +P
−
j and ∂np = ∂n(P

+

j +P
−
j )

with (j=I,II) in the first integral of (29). This operation requires the computation
of the coupling coefficients Cmn given by the overlap integrals

Cmn =
∫ h

0

ψ0
m(x)ψn(x) dx, (31)

which also arise in standard mode matching techniques [6]. The system (29) is
completed by taking the evaluation point in the integral equation on the inlet and
outlet boundaries. An additional set of equations is then produced by projecting
(29) onto the hard-wall modes basis to give

Kj,Γ ∂npint + Kj,I A
−
I + Kj,II A

+

II = Fj,I A
+

I + Fj,II A
−
II (32)

for both boundaries j=I and II. Finally, the scattered modes amplitudes A
−
I and

A
+

II are found by solving (29) together with (32). In practice, the summation in (3)
is limited to the number of propagative modes as well as some evanescent modes
which are included to ensure a precise approximation of the pressure field in the
inlet and outlet boundaries. Thus, the scattering matrix system is of a relatively
small size in the present study.
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5 Results and concluding remarks

The first example concerns the effect of a HQ tube placed in the lined section
of the duct (see Fig. 2). The width of the main duct is h = 2a = 0.04859 m
and the length of the liner is 0.6 m. The results are presented with respect to the
dimensionless variable ka. The study is carried out from very low frequency up to
ka = 2.23 (which corresponds to 5000 Hz) with a stepsize of 1 Hz. In the overall
frequency range, the incident pressure is a plane wave. The first cut-off frequency
occurs at ka = π/2. For the lined wall, the impedance value are chosen as to
be in line with perforate plates encountered in the aeronautic industry. Thus, we
take Z1 = ρc(2 + 2i) and Z2 = ρc(1 + 1i). Note that the expected frequency
dependence of the impedance is not taken into account here but this can be easily
included in the analysis.

Here, we are interested in the Transmission Loss (TL) is defined as the ratio of
transmitted acoustic power with respect to the incident one, that is

TL = −10 log10

⎛
⎝ 1

β0
0

∣∣A+

I,0

∣∣2
∑
m≥0

β0
m

∣∣∣A+

II,m

∣∣∣2
⎞
⎠ , (33)

where the summation is limited to propagative modes only. In order to validate the
method, a full finite element model is used. Radiation conditions at both ends of
the duct have been implemented using the DtN map [7]. In Fig. 3 are plotted the TL
calculated from our method and the FE model. The HQ tube is about 27 cm long
with a width of 4.6 cm and the first 250 modes are included for the impedance
matrix calculation (the FE mesh contains about 2,500 elements). The very good
agreement validates the present method and the small discrepancies noticeable at
high frequency are thought to be due to the FE model which starts loosing accu-
racy. The number of FE nodes is very large compared to number of variables used
in our model (i.e. the number of nodes at the interface + the number of modes
in the summation in (3)) which does not exceed 30, this is reported in Table 1.
At higher frequency, this number is expected to grow very mildly with the fre-
quency whereas the FE model would quickly become intractable because of the

b a

Figure 2: Typical acoustic components. (a): HQ tube connected to a lined section
of a duct (gray color). (b): Helmholtz resonator connected to a rigid-wall
duct.
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Figure 3: HQ tube in a lined duct : our method, full FE model.

Table 1: Comparison of the proposed method with a full FE model. (*) time corre-
sponding to 5,000 TL calculation on a single PC using MATLAB.

CPU time(∗) FE mesh Total dof

HQ tube 10 min 2, 500 30
Helm. resonator 30 s 5, 000 10
full FE model 75 min 12, 000 12, 000

computational overhead. Note that (i) a large part of the CPU time is due to the
calculation of the roots of the dispersion equation (27) and this could be largely
reduced by using fastest methods such as the Newton-Raphson method and (ii) in
all calculations, the modal series for the lined duct Green’s function is truncated
by keeping the first 250 terms in the series to ensure that the diagonal dominant
coefficients of the interface-interface interaction matrix KΓ,Γ are computed with
sufficient accuracy.

The second example concerns the effect of one Helmholtz resonator connected
to a rigid wall duct. This example is taken from [2] and shown in Fig. 2. For the
sake of illustration, Fig. 4 shows typical eigenmode patterns for three resonators
with different neck extensions (in order of appearance: straight, with conical con-
traction and with conical expansion). Again, a comparison with a full FE model
gives perfect agreements as shown in Fig. 5. Here, the main duct is rigid and there
is no need to find the lined duct Green’s function, this explains the very low CPU
time (30 s only). The right figure shows the effect of the extended necks on the TL.

Through these examples, the method presented in this work has shown to be
extremely beneficial, both in term of CPU time and model reduction, when com-
pared to standard FE models. Work is on going by the present authors to extend
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Figure 4: Eigenmodes in the Helmholtz resonators, top: Mode #13 (around 2,800
Hz) and bottom: Mode #215 (around 15,400 Hz).
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Figure 5: Left: Helmholtz resonator with straight extended neck connected to a
rigid wall duct : our method, full FE model. Right: Influ-
ence of the extended necks on the Transmission Loss; solid line: straight,
dashed line: with conical expansion, dotted line: with conical contrac-
tion.

the method for more realistic 3D configurations. The presence of an absorbent ma-
terial in the cavity will also be considered for future work. Finally, we think that
the method proposed in this work could be extended for the analysis of other noise
reduction techniques such as dissipative silencers for instance.
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