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Abstract 

Boundary element approach to the 3D analysis of bimaterial interface cracks is 
put on. J-integral and stress intensity factors are calculated along the crack face 
employing the Energy Domain Integral and the M1-integral techniques. The set-
up numerical means is employed to analyze the problem of a fibre/matrix 
interface crack subject to lateral loading so as to evaluate the factors of the issues 
obtained from two-dimensional simulations. The obtained outcomes demonstrate 
the important role played by the elastic properties of the fibre, the matrix and the 
laminate in the mixed mode fracture condition. Numerical tests performed 
indicate that the multi-domain procedure is suitable for bimaterial stress analysis, 
and as well as competent to yield precise results of the stress intensity factors KI 
and KII. The multi-domain boundary contour method with possible applications 
to interface and dissimilar material problems and also a technique tackling with a 
general type of displacement and traction compatibility conditions are 
introduced. 
Keywords: bimaterial plate, debonding, energy domain integral, interface crack, 
normalized SIF, shared node, virtual crack extension. 

1 Introduction 

Composite materials have highly anisotropic properties, with superb stiffness 
and strength behaviour in the fibre direction and rather weak properties in the 
transverse direction. For this reason, laminates are used being made up of several 
stacked plies with different fibre orientations, causing sufficient stiffness in more 
than one direction. Nevertheless, mechanical loading of such structure also 
induces loads in arbitrary directions not the same either with those of the fibre or 
the applied load. The reason of early failure of the transverse ply is the material 
heterogeneity. It has been demonstrated that a global strain of 1% already 

Boundary Elements and Other Mesh Reduction Methods XXXII  85

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press

doi:10.2495/BE100081



produces local strains of more than 5%. An irregular packing of fibres owing to 
the inhomogeneous fibre distribution, increases the effect. Due to this local stress 
concentration, the macroscopic transverse failure strain is, in the majority of 
cases, extensively lower than the longitudinal failure strain. In all loading 
directions, the macroscopic characteristics of unidirectional fibre-reinforced-
composite materials are hard affected by the events being present at the fibres 
scale. In longitudinal as well as in transverse direction, the stress transfer from 
the matrix to the fibres determines the mechanical behaviour of the composite, 
for the failure process is principally established by the strength of the 
fibre/matrix adherence. The stress concentrations around the fibres end in micro-
crack initiation that will grow along a ply to come to be a complete lateral crack.  
     Recently, broad analyses have been performed and many questions regarding 
the mechanics of interface fracture have been solved. But still, progress has been 
generally oriented on the two-dimensional idealization of an interface crack, and 
restricted endeavour has been conducted on the three-dimensional concept of 
interface fracture. This is partly owing to the extreme complexity of such 
problems and very large computational efforts required for their numerical 
analysis. However, given the material mismatch at the interface boundary, it 
goes without saying that the three-dimensional effect plays a more outstanding 
role in a biomaterial structure than in a homogenous one.  
     Due to the inherent characteristics of the BEM formulation, it provides very 
precision issues for problems including strong geometrical discontinuities. This 
makes BEM a powerful numerical means to simulate crack problems. 
     BEM has been far-reachingly employed to analyze an amount of problems 
involving two-dimensional interface cracks [1, 2]. There are yet no reported 
results for three-dimensional problems, with the exception of an in-depth and 
superior study [3]. Though many authors suggest displacement and stress 
extrapolation methods to stipulate stress intensity factors from BEM outcomes 
[4, 5], J-integral methods make up a more strong approach. As an energy 
concept, J-integral methods eliminate the need to solve local crack tip fields 
precisely, because if integration domains are defined over a relatively large part 
of the mesh, accurate modelling of the crack tip is superfluous, since the 
contribution to J-integral of the crack tip fields is not meaningful. At the same 
time, BEM is especially appropriate for the evaluation of path independent 
integrals, as the required stresses, strains and derivatives of displacements at 
internal points can be directly obtained from their boundary integral 
representations. It has been also shown that BEM yields more accurate stresses 
and strains at internal points when comparing with other numerical techniques, 
therefore better results can be achieved. Use of the J-integral methodology 
for two-dimensional interface cracks can be searched in the work by Miyazaki et 
al. [6]. 
     From the available algorithms for the numerical computation of the J-integral 
in three dimensions, the Energy Domain Integral (EDI) has been frequently used 
to employ. Together with the EDI, the interaction or M1-integral methodology 
due to Chen and Shield [7] is used in this work, in compliance with [3], for 
decoupling the J-integral into the mixed–mode stress intensity factors. The M1-
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integral methodology is grounded on the superposition of two equilibrium states, 
formulated by the current problem and a set of auxiliary known solutions. The 
procedure has been recently announced in a number of papers using FEM to 
calculate stress intensity factors along three-dimensional interface cracks [8, 9]. 
In the field of fracture mechanics the solution to the applications of very interest 
is facilitated by using a multi-domain technique grounded on the boundary 
contour method [15]. 

2 J- ntegral and stress intensity factor calculation 

Take a three-dimensional crack face with a continuously turning tangent as 
depicted in Fig. 2(a). Characterize a local coordinate system x* at position η, 

where the crack energy release rate is evaluated, given by 
1x  normal to the crack 

front, 
2x  normal to the crack plane, and 

3x  tangent to the crack front. 

     The energy release rate G(η) owing to crack extension in its own plane along 
a three-dimensional crack front reads 
 

      
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where w is the strain energy density, 
ij  and 

kju ,  are Cartesian components of 

stress and displacement derivatives expressed in the local system  kx ,  is 

the unit outward normal to the crack front in the local crack plane   31 xx  , ni is 

the unit vector normal to the contour C(η) (which lies in the   21 xx  plane), and 

dC is the differential of the arc length C. Although eqn (1) comes from a two-
dimensional analysis, it applies for the three-dimensional case, in the limit as 
C→0, plain strain conditions predominate three-dimensional fields approach to 
the plane problem.  
     So as to deduce the equivalent domain representation of eqn (1), we consider 

a small segment Lc of the crack front that lies in the local   31 xx  plane. Next we 

suppose that the segment undergoes a virtual crack advance in the plane of the 
crack, and we define the magnitude of the advance at each point η as Δa(η). We 
note that Δa(η) varies continuously along Lc and disappears at each end of the 
segment. We have 

        d 
cL

aGG  (2) 

 
where G(η) is the integral defined in eqn (1). When G(η) is part of the point-wise 

energy release rate, G  gives the total energy released when the finite segment Lc 
experinces the virtual crack advance.  
     The relevant domain shape of the point-wise crack-tip contour integral can be 
obtained from eqn (2) by considering a tubular domain V surrounding the crack 
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segment (see Fig. 3). As shown in the figure, the surface St is formed by 
translating the contour C along the segment Lc, and So stands for the outer surface 
of V including the ends. Next an auxiliary function q is introduced, which is 
sufficiently smooth in V and it is determined on the surfaces of V in the form: 
 

 
   



 


o

tk
k S

Sa
q

on,0

,on,
 (3) 

 
     Lastly, in the limit as the tubular surface St is thrusted onto the crack segment 
Lc and in the absence of crack face tractions, we obtain the domain integral: 
 

   VqwuG ikV kikjij d,,     (4) 

 

     During absence of body forces the integral G  according to eqn (4) reduces to 
the domain representation of the familiar J-integral. If it is supposed that G(η) is 
constinuous along Lc, at once it follows from eqn (2) that: 
 

    
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     We put on the interaction or M1-integral methodology for decoupling three-
dimensional mixed-mode stress intensity factors in bimaterial interface cracks. 
So as to make sure the purpose of the stress intensity factors we must consider 
the linear elastic solution of the open model of interface cracks. It is assumed in 
this model that the small contact zone that always develops at the crack tip is 
physically non-relevant. We label the material occupying the upper half-plane as 
material 1 with Young modulus E1 and Poisson ratio ν1 (see Fig. 1). The material 
occupying the lower half-plane has Young modulus E2 and Poisson ratio ν2. Let 
us consider now two equilibrium states with field variables denoted by the 
superscripts (1) and (2). Superposition of the two equilibrium states results in 

another one, (1 + 2). Next, the stress intensity factors  21
jK  are equal to 

 

        IIIII,I,2121  jKKK jjj  (6) 

 
     The relationship between the J-integral and the stress intensity factors of an 
interface crack may be written in the form 
 

     222
2 2

1
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1
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E
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
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where E* and μ* are the effective Young and shear modulus 
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Figure 1: Bimaterial plate weakened by an interface crack (taken from [3]). 
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and ε represents the bimaterial constant 
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     According to eqns (6), (7), the stress intensity factors can be related to the J-
integral for the superimposed state (1 + 2) leading to 
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     We may rewrite eqn (10) by virtue of the stress intensity factors for the 
equilibrium states (1) and (2), to pass: 
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     Then, the M1-integral is determined being 
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     In compliance with eqn (4), a domain representation of the M1-integral can be 
obtained in the following form: 
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3 Boundary element realization 

Relations (4) and (13) facilitate the computation of J-integral and the mixed-
mode stress intensity factors at any position η on the crack front to be performed. 
In each instance, this requires the evaluation of a volume integral within closed 
domains that enclose a segment of the crack front Lc. A natural choice here is to 
make η coincident with the element nodes on the crack front, while Lc is taken as 
the element or element sides at which points η lie (see Fig. 2). The portion of the 
model domain in which the volume integrals are evaluated is discretized using 
27-noded isoparametric (brick) cells, over which stresses, strains and 
displacements derivatives are approximated by products of the cell interpolation 
functions Ψi and the nodal values of σij, εij and ui,j. Nodal values of this variable 
depend on whether the node is internal or lies on the model boundary. Volume 
discretization is designed to have web-style geometry around the crack front, 
while the integration volumes are taken to coincide with the different rings of 
cells, what is demonstrated in Fig. 3, where the front of the model was partially 
removed to point out the crack and the integration domains.  
     Conforming to Fig. 2, three different cases are in want of the reflection, 
depending on whether the node of interest M is in the middle of an element side 
(mid-side node), it is shared by two elements (shared node), or it is situated the 
same with the external surface (surface node). If the node M is a mid-side node 
or surface node, Lc (the segment of the crack front over which the M1-integral is 
computed) spans over one element, connecting nodes M – 1, M, and M + 1 and 
nodes M – 2, M – 1 and M, respectively. On the other hand, if M is a shared 
node, Lc spans over two elements, connecting nodes from M – 2 to M + 2.  
 

 

Figure 2: Scheme of the volume cells in the crack front region explaining the 
virtual crack stretches for a shared node, a mid-side node and a 
surface node [3]. 
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Figure 3: (a) Problem geometry, (b) boundary element discretization 
(c) integration domains. 

4 Explanation of a fibre/matrix interface crack subject to 
lateral loading 

A fibre/matrix interface crack is a special example of interface crack. High-
resolution numerical BEM models [11] and analytical solutions [12] have shown 
that for arc-shaped debonds an extensive region with negative opening  
 

 

Figure 4: Schematic representation of the cross-section of the fibre embedded 
in matrix and loaded transverse to the fibre axis. The fibre/matrix 
interface is partially debonded and three regions at the interface can 
be distinguished: I, perfect bonding; II, debonded zone with debond 
face contact; III, open zone [11]. 
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(overlapping) before oscillation of the solution may, depending on the debonding 
length, arise. The problem must be under these circumstances modelled in 
accordance with Comninou conclusions [13] as appears in Fig. 4 [11]. Region I 
represents perfect bonding between fibre and matrix whereas Regions II and III 
represents the debonded part, Region II corresponding to the contact zone and 
Region III corresponding to the opened part of the debonded zone. A physical 
explanation of the relative sizes of overlapping predicted by the analytical 
solutions and the BEM models is given in [10]. When the debonding starts to 
reach approximately 60°, a contact zone of physical meaning can be established. 

5 Discussion about results 

If the effect of the fibres in the laminate is taken into consideration (results 
labelled as “fibre in laminate”), the large stiffness of the specimen in the 
direction of the thickness causes that the crack behaves as in the plain strain 
model, and a constant J-integral value is obtained along the entire crack front. 
The two other sets of results are in accordance with the limiting cases for which 
the elastic properties of the isotropy plane are put the same to those of the matrix 
and the fibre. If the elastic properties are those of the matrix, the J-integral value 
is practically the same to that obtained for the single fibre example at the interior 
of the specimen, but it decreases at the free surface. Lastly, when the elastic 
properties of the isotropy plane are those of the fibre (the most rigid of all cases 
analyzed) J-integral presents its lowest level, and analogously to the 
homogenous case it introduces a constant value along the complete crack face.  
     The results facilitate the interpretation of experimental observations as those 
reported by Meurs [14] who tested a single glass-fibre-reinforced sample subject 
to lateral loading with four increasing steps when verified initiation of 
debonding.  
 

 

Figure 5: KI along the crack front for the fibre/matrix interface crack. 
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     Note that in accordance with the numerical results for the single fibre 
example, debond crack initiates at the specimen surface where the maximum J-
integral value is achieved.  
     Stress intensity factor issues are shown for the three modes of cracking eg  

in Fig. 5. Results are normalized with respect to a  . Fig. 5 permits 
watching that the characteristics of KI values are obtained for the cases with the 
largest material mismatch between the fibre and the vicinity material, only with 
the exception of the limiting case for which the elastic properties of the isotropy 
plane are put on identical with those of the matrix, KI results present a constant 
value along the majority of the crack front.  

6 Solution to biomaterial interface cracks [15] 

Problems of fracture mechanics as far as cracks at the interface between 
dissimilar materials are of interesting owing to their relevance to issues of 
debonding or delamination in composite materials. Concurrently, analytical 
studies (eg [16, 17, 19]) have demonstrated that the stress field close to an 
interface crack tip shows an oscillatory singularity. Even though the oscillation 
region is restricted to the vicinity of the crack tip, it has become visible to put on 
a challenge to the FEM and BEM, in precisely predicting the individual SIF for 
interface crack problems. The primary advantage of the BEM over the FEM in 
solving fracture problems is that only the boundary of the domain is discretized. 
Substantial amount of multi-domain BEM studies has been devoted to problems 
involving bimaterial interface cracks. The multi-domain boundary contour 
method or MBCM technique cas also be applied to solve bimaterial interface 
fracture problems where the SIFs are among interestingly parameters.  
     In the case of bimaterial interface cracks, the complex SIFs, gained by dint of 
the displacement correlation technique, are related by (see [18]) 
 

 
    



 i

tn
r l

r
uiΔui

rC
iKK










 21

2cosh2
lim

0
21  (14) 

 
where Δut and Δun are the tangential and normal components of the crack 
opening displacement, l is a random length used to normalize the distance r from 
the crack tip, and  
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with G1 and νj as the shear modulus and Poisson´s ratio of the material j.  
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     In the context of the MBCM, the above limit is at a rough estimate evaluated 
by using a small value of r which is the distance from the current crack tip to a 
nearly node on the crack-tip element. Therefore, the COD components in eqn 
(14) are those at the selected node, determined in the form:  
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where θ is the crack bearings at the said crack tip, lower
i

upper
ii uuu   where i = 

1,2, and lower
i

upper
i uu and are the nodal displacement components of the upper 

and lower faces of the crack being specified from the MBCM analysis.  
     In general, it has been indicated that more accurate SIFS are obtained if the 
end-node of the crack-tip element is chosen for determining r instead of the mid-
node (see Fig. 6). This may be clarified by the fact that if r is too small, the 
numerical results are degenerated by the oscillatory stress field region near the 
crack tip.  
     For cracks in a homogenous material, ε = 0 and C = 2 (κ+ 1)/μ (according to 
eqn (15)). As a result, eqn (14) comes to be  
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where the notations KI and KII are used to name the mode-I and mode-II. SIFs for 
homogeneous materials.  

 

Figure 6: Crack-tip element. 

7 Conclusion  

Boundary element methodology for the three-dimensional analysis of bimaterial 
interface cracks has been presented. The interface crack study is spoken to, using 
a multidomain BEM formulation so as to be the reason for the different material 
properties at both sides of the crack. The parameters of fracture mechanics, 
namely J-integral and stress intensity factors, are calculated along the crack front 
employing the Energy Domain Integral and the M1-integral methodologies. 

94  Boundary Elements and Other Mesh Reduction Methods XXXII

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 50, © 2010 WIT Press



These are implemented as a post-processing technique, and so it can be applied 
to the results from a particular model at a later stage. The carrying out exploits 
the efficiency of the boundary integral equation to directly obtain the demanded 
displacement derivatives, stress and strain fields from their boundary integral 
symbolizations.  
     The suggested numerical aid is employed to analyze the problem of a 
fibre/matrix interface crack under transverse loading in order to assess its three-
dimensional nature. This three-dimensional model will in any case permit in the 
future the possibility of the interaction between longitudinal and circumferential 
growth of the crack to be studied. Obtained results show the leading role played 
by the relative elastic properties of the fibre, the matrix and the laminate on the 
state of mixed mode fracture. The instance of a single debonded fibre in a 
homogenous panel sets up the most severe condition, because it presents a large 
material mismatch with low lateral constraint. On the other hand, a fibre in a 
laminate behaves very similarly to a plain-strain case analysis, indicating that 
three-dimensional effects are very poor for this case. Lastly, the computed 
mixed-mode stress intensity factor indicates, that for most of the material 
combinations studied, KI does not present important changes along the crack 
face, inclusive of the zone in the vicinity of the free lateral surface. By contrast, 
the boundary layer effect is noticeable for KII and KIII.  
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