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Abstract 

In an earlier study, an attempt was made to ameliorate the concentration of 
oxygen in the lower layer of a reservoir by using a machine that supplies 
dissolved oxygen (DO). Field studies in a few water reservoirs have led to 
reports of a phenomenon in which the distance reached by the DO-rich water 
was more than 300 m (metres) in spite of the very low velocity of the water flow. 
In order to represent this phenomenon numerically, we proposed a velocity 
increase caused by the liquid density , the gravity acceleration g and the time 
increment t. In this paper, we refer to call the velocity increase as the density 
diffusion, since the velocity increase seems to allow the area of DO diffusion to 
increase in the vertical direction. We would like to investigate the numerical 
criteria for calculating the density diffusion in a water reservoir using two-
dimensional convective diffusion equations. Using the signs of the space division 
h=s), the time increment k=t), the diffusion parameter  (= D*k/(h)2 ), and 
the Courant number Cr (=V*k/h), we discuss the order estimate for calculating 
the density diffusion. 
Keywords: numerical criteria, density diffusion, meshless method, boundary 
element  method,  concentration  in  water reservoirs,  observed concentration
distribution in model simulation  of water reservoir. 

1 Introduction 

When the DO concentration equals 100 mg/L (milligrams per litre) the liquid 
density  becomes 1.0001 Kg/L (kilograms per litre). To estimate the liquid 
density  of 1.0001 Kg/L in the numerical analysis, it is necessary to ensure that 
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the space division h is less than (0.0001)1/3 (=0.046) m in the calculation by 
using the method of the order of three-degree accuracy. If the order of two-
degree accuracy is used, the space division h becomes less than (0.0001)1/2 
(=0.01) m. When diffusion parameter which is less than 0.288 in the 
calculation using the finite difference method (FDM), satisfies the order of four-
degree accuracy (O(h4)), the FDM can yield very accurate and convergent 
solutions when analysing the two-dimensional diffusion equation. To calculate 
the convection term, we use the FDM called the UTOPIA scheme or the QUICK 
scheme, which satisfies the order of three-degree accuracy (O(h3)) (Leonard [2]). 
With respect to analysing the DO concentration by using the two-dimensional 
convective diffusion equation in the problem described above, we combine the 
FDM of the order of four-degree accuracy (O(h4)) and the UTOPIA scheme or 
the QUICK scheme of the order of three-degree accuracy (O(h3)). When the 
combined method above is adopted, the space division h should be less than 
0.00011/3 (=0.046) m for the estimation of the liquid density  of 1.0001 Kg/L. 
Next, we tried to upgrade the order of the accuracy of the meshless method, the 
BEM, and the finite element method (FEM). The upgrade was performed by 
introducing the radial basis functions of the Gaussians or the multiquadric to the 
meshless method, the special fundamental solution to the BEM, and the upwind 
shape function to the FEM. The newly developed methods, the meshless 
methods, the BEM, and the FEM, were tested to analyse the problem described 
above, and the order of the accuracy of these methods was analysed numerically. 
The calculated solutions obtained by using these methods were compared with 
the observed results in our model simulation, and the effectiveness and accuracy 
of the alternative numerical methods were estimated. 

2 Governing equations  

Convective-diffusion Equation (1) governs the diffusion of the concentration of 
oxygen in a water reservoir in the vertical (x1, x2) plane, as illustrated in Fig. 1, 
 
 C,t + u1·C,1+ u’2·C,2  D1·C,11  D2·C,22  0 (1) 
 
where C is the concentration of dissolved oxygen (DO), C,t is the time derivative 
of C, u1 and u’2 are the velocities of the x1 and x2 directions, respectively, and D1 
and D2 are the diffusion coefficients of the x1 and x2 directions, respectively. 
Here, C,1 and C,2  describe the derivatives of C differentiated with respect to x1 
and x2, respectively, and C,11 and C,22  are the derivatives of C differentiated 
twice with respect to x1 and x2 , respectively. The velocity u’2, which is shown in 
the above Equation (1), is defined as written in Equation (2),  
 

 
t+tu’2 = tu2DOgt = tu2gt  in the finite difference scheme  (2) 

i
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where t+tu’2 and tu2 are the velocities at time (t+t) and time (t) in the vertical 
direction, respectively. The second term (gt) of the right-hand side of 
Equation (2) means that the DO concentration increases the velocity of the 
vertical direction, and describes the density of the liquid that dissolves DO. 
Here, the velocity increase is caused by the liquid density , the gravity 
acceleration g, and the time increment t. We refer to the velocity increase as the 
density diffusion, since the velocity increase seems to allow the area of DO 
diffusion to increase in the vertical direction, as described above, and expect that 
the velocity increase in the convective diffusion can be used as a device or 
evidence to explain the phenomenon in which the distance reached by the DO-
rich water was more than 300 metres in spite of the very low velocity of the 
water flow     Here, the density  is connected to the DO concentration C, as 
written in Equation (3), where  and DO describe the densities of pure water 
and dissolved oxygen, respectively. 
 
                                       = C·DO(3) 

3 Numerical methods for calculating the density diffusion 

We applied the meshless method, the FDM, the FEM and the BEM to analyse 
the density diffusion in the unsteady state in a water area, as shown in Fig. 1. 

 

Figure 1: Analytical domain and a DO-supplying machine in a constructed 
model of a water reservoir. 

3.1 Meshless method formulation for concentration analysis 

The concentration in the steady state is expressed as Equation (4) with Equation 
(5) (Sakamoto et al. [1]), 
 C = j Xj  ,  Xj = (r2+c2)1/2    or  Xj = exp(-c r2) (4)  
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 (5) 

where r equals {(x-xj)+(y-yj)}
1/2 and c is the constant.  The transient convective-

diffusion equation is then rewritten as follows 
 

 C,t  + L(C) = 0 (6) 
 

where C,t is the time derivative of C and L(C) has the terms of convection and 
diffusion in the steady state. Applying the finite difference scheme, Equation (6) 
yields 

 02/)}C(L)C(L{t/)CC( tttttt    (7) 
 
 2/t)C(LC2/t)C(LC tttttt     (8) 
 

where Ct+t and Ct are the concentrations at time (t+t) and time (t), respectively, 
and Lt+t and Lt are the terms of convection and diffusion at time (t+t) and 
time(t), respectively. Finally, using Equations (3), (4), and (8), the meshless 
method can be used to analyse the DO concentration in the unsteady state using 
the global expansion function Xj (= (r2+c2)1/2 or exp(-c r2)) of the mesh-free 
RBF collocation method (Divo et al. [3]) or the radial basis functions of the 
Gaussians (Powell [4]). 

3.2 Finite difference method for convective-diffusion analysis 

To analyse the DO concentration by using the two-dimensional convective -
diffusion equation, we combine the finite difference scheme of the order of four-
degree accuracy (O(h4)) for the diffusion terms and the UTOPIA scheme of the 
order of three-degree accuracy (O(h3)) for the convective terms (Leonard [2]). 
The weighted finite difference method (WFDM) (Kanoh et al. [5]) is also applied 
to convective-diffusion analysis. 

3.3 Finite element method for convective-diffusion analysis 

The upwind shape function (Kanoh and Kuroki [6]) and the ordinary shape 
function are tested to analyse the two-dimensional convective-diffusion problem 
using the FEM. The upwind finite element formulation is expected to yield a 
high order of accuracy to the computation of the problem, since the upwind 
weights of the exponential function give an exact solution to the one-dimensional 
convective -diffusion equation (Kanoh and Kuroki [6]). With respect to the 
analysis of the one-dimensional convective-diffusion equation, we propose that 
the analysis of the two-dimensional density diffusion be calculated by using the 
one-dimensional convective-diffusion analysis twice. The pure diffusion analysis 
can be perfectly calculated using the 7,500 elements (h=0.011m) with the 
ordinary shape function. 
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3.4 Boundary conditions and boundary discretisation 

Both the boundary conditions and the boundary discretisation for the flow and  
concentration analyses have been previously proposed for the meshless method, 
the BEM, the FEM, the FDM, and the WFDM (Sakamoto et al. [1]). 

4 Model simulation 

We introduced a concept, described in the next subsection, in the simulation 
model constructed in our laboratory and obtained some observed velocity vectors 
and the distributions of the DO concentration in the model. In reference to the 
observed results, we tried to obtain some evidence to explain the phenomena that 
the distance reached by the DO-rich water was more than 300 metres in a 
reservoir in spite of the small velocity of the water flowing out. For this purpose, 
it was necessary to reproduce, in our model simulation, the density flow and 
convective diffusion of the DO concentration in the lower layer of a water 
reservoir at a depth of about 50 metres. 

4.1 Simulation technique in the model 

The concept introduced in our simulation model is described as follows: the 
density difference among 7 mg/L, 30 mg/L, and 100 mg/L in the DO 
concentration was changed to the density difference of the water temperature, 
since it was very difficult to make up the high concentration of DO of 100 mg/L 
in our model simulation at a depth of about 1.0 metres. Referring to Table 1, the 
density difference between 7 mg/L and 30 mg/L in DO was equal to the 
difference of the water temperature between 15.00°C and 14.87°C. Furthermore, 
the density difference between 7 mg/L and 100 mg/L in DO was equal to the 
difference of the water temperature between 15.00°C and 14.55°C. We iced the 
water that flowed out of the tank of the model and could easily control the 
difference of the water temperature among 15.00°C, 14.87°C, and 14.55°C. In 
this paper, the analogy between the differences in the water temperature and the 
DO concentration was proved by referring to the concentration distribution in the 
reservoir model visualised using a pigment and a VTR. The demonstration 
procedure is described as follows. First, we flowed out iced water at 14.87°C 
into water at 15.00°C with the same DO concentration. Secondly, we flowed out 
water with DO of 30 mg/L into water with DO of 7 mg/L with the same water 
temperature. Thirdly, we compared the VTR pictures of the movement of the 
area of the concentration distribution of both the differences of the water 
temperature and the differences of the DO concentration and observed that the 
VTR pictures of both movements were almost the same at every second. We 
consider that the analogy between the differences in the water temperature and 
the DO concentration can reproduce the horizontal direction of water flow and 
the convective diffusion of the DO of the water reservoir at a depth of about 
50 metres in our model simulation. Here, 5 Kg/cm2 (kilogram per square 
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Table 1:  Density difference between 100 mg/L and 30 mg/L in DO and that 
of the water temperature among 15.00, 14.87, and 14.55 (°C).  

 
centimetre) corresponds to 0.5 MPa (megapascal) in the international system of 
units (SI). 

5 Results and discussion 

As described above, we introduced a concept in the simulation model 
constructed in our laboratory and were able to observe some velocity vectors and 
obtain the distributions of the DO concentration in the model. In reference to the 
observed results, we tried to obtain some evidence to explain the phenomena that 
the distance reached by the DO-rich water was more than 300 metres in a 
reservoir in spite of the small velocity of the water flowing out. The numerical 
results of the meshless method, the BEM, the FEM, and the WFDM are also 
discussed in this section in order to investigate the numerical criteria for 
calculating the density diffusion in a water reservoir using two-dimensional 
convective diffusion equations. 

5.1 Observed values in a model around a DO-supplying machine 

5.1.1 Flow velocity in a model 
Figure 2(a) is an illustration of the velocity vectors of the temperature difference, 
-0.1, caused by a DO-supplying machine in a reservoir model visualised using a 
pigment (methylene blue), aluminium flakes, a strobe light, and a digital VTR. 
Figure 2(b) shows the velocity vectors of the DO concentration difference, 
23 mg/L, in the reservoir model. We consider that the analogy between the 
differences of the water temperature and the DO concentration can be proved by 
using the observed velocity vectors, since both profiles of Fig. 2(a) and Fig. 2(b) 
seemed almost identical. 

B water reservoir 
(waterdepth:50m) 

Our model 
simulation 

(water depth:1m) 
Maximum DO value (mg/L) 100 30 

Water head (Kg/cm2) 5.0 0.1 
Value of   

(using Equation (3): at 15°C) 
0.999127+0.0001 0.999127+0.00003 

Water temperature that corresponds 
to the above value of  (°C) 

14.55 
(=15.0-0.45) 

14.87 
(=15.0-0.13) 

Value 
Place 
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5.1.2 Concentration distribution of DO in a model 
Figure 3 is an illustration of the concentration distribution of the temperature 
difference, -0.1, caused by a DO-supplying machine in a reservoir model 
visualised using a pigment (methylene blue) and a VTR. We consider that the 
analogy between the differences of the water temperature and the DO 
concentration can also be proved by using the observed concentration 
distribution, since both profiles of the temperature difference (Fig. 3) and the 
DO-concentration difference seemed almost identical (the figure to illustrate the 
concentration distribution of the DO-concentration difference, 23 mg/L, in the 
reservoir model was omitted). 
 

(a) 

(b)  
Figure 2:  (a) Observed velocity (Temperature difference:-0.1). (b) Observed 

velocity vectors (DO difference: 23mg/L). 
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 120sec 60sec 30sec 10sec  

Figure 3: Observed areas of diffusion of pigment (temperature difference:-
0.1). 

5.2 Flow analysis in the model of a water reservoir 

For computing the density diffusion, the velocity data are important and have 
significant influence on the calculated results. However, we would like to focus 
on the numerical criteria for calculating the density diffusion in this paper. The 
figures to illustrate the calculated velocity vectors were omitted, and discussions 
of flow analysis are limited to their influence for computing the density 
diffusion. 

5.3 DO concentration analysis in the model of a water reservoir 

5.3.1 Time required by the four numerical methods for the DO analysis 
Table 2 shows the time required by the four numerical methods for analysing the 
DO concentration in the model. When the number of divisions of the analytical 
domain was 4,961, the FDM, the FEM, and the meshless method needed almost 
1.1, 4.4, and 10.3 times the time required by the WFDM, respectively. For the 
purposes of saving time, the WFDM was the best; the FDM was second best; the 
FEM was the third best; and the meshless method was the poorest performer. We 
believe that the reason that the WFDM was the best, the FDM was the second 
best, and the FEM was the third best is that the WFDM and FDM can be easily 
applied to an explicit scheme and the coefficient matrix of the FEM is suitable 
for employing the skyline solver. On the other hand, for the purpose of saving 
the time and labour required for preparing the input data, the meshless 
methodwas the best, the FDM was thesecond best, the FEM was the third best 
and the BEM was the worst. 

5.3.2 FEM calculation of the concentration distribution 
Figures 4(a) and 4(b) are illustrations of the concentration distribution calculated 
using the FEM with the ordinary shape function, in which the number of 
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Table 2:  The time required by the four methods for analysing the unsteady 
convective diffusion of DO for 240 seconds in a model of a water 
reservoir. 

  
 
 
 
 
 
 
 
 

Numerical method 

0.005 1.00 

0.1 4.40 FEM 

WFDM 
0.005 

5.0 

FDM 

Meshless method 10.3 

1.10 

Relative computational time Number of divisions: 

4,961  

Time  
increment: 
�t (sec) 

 
 
divisions in the FEM is 4,800 and 10, 800, respectively. Here, the two values of 
 and are 1,000.0 and 0.0001 m2/sec, respectively. Comparing Fig. 4(a) (in 
which the adopted number of divisions is 4,800) with Fig. 4(b) (in which the 
adopted number of divisions is 10, 800), it was noted that the increase of the 
number of divisions made the areas of the DO distribution wider in the vertical 
direction in the FEM analysis. With respect to the influence of flow analysis for 
computing the density diffusion, it is important to use an appropriate value of  
in the FEM flow analysisThe value of  changed the velocity-vector  
 
 
 
 
 
 
 
 
 
 

(a) 
 

 
. 
 
 
 
 
 
 

(b) 

Figure 4: DO-concentration distribution calculated using the FEM with 
(a) 4,800 elements (4,961 points) [t=240sec]; (b) 10, 800 elements 
(11,041 points) [t=240sec]. 
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distribution so significant that it was necessary to adopt the optimum value of . 
We believe that the upwind shape function may make it possible to set the 
optimum value of in the FEM flow analysis. 

5.3.3 Meshless calculation of the concentration distribution  
Figure 5 is an illustration of the concentration distribution calculated using the 
meshless method, in which the term of the velocity increase (gt) is adopted, 
the number of divisions in the meshless method is 4,800, and the value of  is 
0.0001 m2/sec. Referring to Figs. 4(a) and 5, the solutions of the meshless 
method showed the same tendency as those of the FEM in this problem. We 
considered that the convergence and accuracy of the FE, the FD, the BE, and the 
meshless methods for this problem were satisfactory (the figures to illustrate the 
concentration distribution calculated using the FEM with the upwind shape 
function and the BE method have been omitted). 
 
 
 
 
 
 
 
 

Figure 5: DO-concentration distribution using the meshless method with 
4,961 points [t=240sec]. 

5.3.4 FDM calculation of the concentration distribution 
Fig. 6 is an illustration of the concentration distribution calculated using the 
FDM, in which the finite difference scheme of the order of four-degree accuracy 
(O(h4)) for the diffusion terms and the UTOPIA scheme of the order of three-
degree accuracy (O(h3)) for the convective terms are combined. Here, the 
numbers of divisions in the FDM are 4,800 and 8,800 and the value of  is 
0.0038 m2/sec. We believe that the convergence and accuracy of the FDM for 
 
 
 
 
 
 
 
 
 

Figure 6: DO-concentration distribution using the FDM with 4,961 points 
[t=60sec]. 
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this problem were satisfactory. The term (gt) of the density diffusion seemed 
to make the areas of the diffusion wider in the vertical and flowing-out directions 
and the speed of the convective diffusion higher than those in the analyses of the 
FDM when this density diffusion was not applied. 
 

6 Conclusion 

In summary, (1) in this paper, the velocity increase was defined as the density 
diffusion that was caused by the water density , the gravity acceleration g, and 
the time increment t; (2) the meshless method, the BEM, the FEM, the FDM, 
and the WFDM were developed and applied to the analysis of the density  
diffusion; (3) introducing the radial basis functions of the Gaussians or the 
multiquadric to the meshless method, the special fundamental solution to the 
BEM and the upwind shape function to the FEM, we tried to upgrade the order 
of the accuracy these methods; (4) the finite difference scheme of the order of 
four-degree accuracy (O(h4)) for the diffusion terms and the UTOPIA scheme of 
the order of three-degree accuracy (O(h3)) for the convective terms were 
successfully combined for the FDM;(5) the density diffusion could make the 
areas of the diffusion wider in the vertical and outflow directions and make the 
speed of the convective diffusion be higher than in the analyses of these methods 
when this velocity increase was not applied; (6) the stability and convergence of 
the five kinds of analysis using these newly developed methods seemed 
satisfactory; (7) the analogy between the differences of the water temperature 
and the DO concentration could be proved by using both the observed 
concentration distribution and the visualised velocity vectors in our model 
simulation; (8) these developments and ideas described above were investigated, 
and the numerical criteria for calculating the density diffusion in a water 
reservoir using the two-dimensional convective diffusion equations was 
discussed. 
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