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Abstract 

The 2-dimensional (2-D) Cauchy condition surface (CCS) method to identify the 
plasma boundary shape has been expanded to deal with 3-D nuclear fusion 
plasma. This 3-D CCS method solves a set of boundary integral equations in 
terms of 3-D vector potential with the aid of measured magnetic sensor signals 
and coil current data. Results obtained in a trial calculation for axisymmetric 
plasma indicate that this new 3-D method can also determine the plasma 
boundary shape accurately in the same way as the 2-D CCS method. The 
authors’ research group has a plan to improve this 3-D CCS method to analyse 
fusion plasma that has a helical geometry. 
Keywords: nuclear fusion, plasma boundary, Cauchy condition surface method, 
magnetic sensor, vector potential, vacuum field, boundary integral equation. 

1 Introduction 

To know the boundary shape of plasma in a nuclear fusion device is important 
for the control of its operation and for diagnostic purposes. As the plasma 
temperature in such a device is higher than a hundred million deg. K (Kelvin), it 
is almost impossible to place any sensor inside the plasma. Usually, the plasma 
boundary shape is indirectly estimated with the aid of on-line computing from 
signals of magnetic sensors located outside the plasma. For this purpose, the 
Cauchy condition surface (CCS) method [1] has already been established for a 
tokamak-type fusion device, e.g., the JT-60 of the Japan Atomic Energy Agency 
(JAEA). Here, the Cauchy condition surface (CCS) is defined as a surface where 

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 
doi:10.2495/BE090351

Mesh Reduction Methods  397



both the Dirichlet and the Neumann conditions are unknown. The geometry of 
tokamak plasma is axisymmetric so that the analysis using the CCS method can 
be made in a 2-dimensional (2-D), r-z system. On the other hand, 3-D analyses 
are required for non-axisymmtric plasma, e.g., in a helical type device such as 
the LHD (Large Helical Device) of the National Institute for Fusion Science 
(NIFS), Japan. The CCS method, however, has not yet been expanded for 
application to a 3-D space analysis. 
     The aim of the present work is to investigate whether the CCS method can 
also be applied to a 3-D system that has a much larger number of unknowns than 
a 2-D system. Modifying a 3-D boundary element code to solve the Poisson 
equation, a prototype of 3-D CCS method code has been developed. The present 
paper deals with tokamak-type axisymmetric plasma, which can be also analyzed 
using the 2-D CCS method, to demonstrate the fundamental performance as a 3-
D code. The authors intend to tackle an actual 3-D geometry such as the helical 
one in a later paper. 

2 Three-dimensional CCS method 

In the 3-D version of the CCS method proposed here, the CCS ( C ) is assumed 

to have a torus shape and to be located in the actual plasma region in 3-D space, 
as illustrated in fig. 1. In the present work the Dirichlet condition and the 
Neumann condition along the CCS are the vector potential and its derivative, 
respectively, while they were the magnetic flux and its derivative in the 
conventional 2-D CCS method [1, 2].  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Extention of CCS method to a 3-D system. 

     The torus shape CCS is divided into a certain number of boundary elements, 
each of which has 9 nodal points. The first step of the analysis is to obtain the 
values of the Dirichlet and Neumann conditions at each nodal point in such a 
way that they will be consistent with the magnetic sensor signals. For this 
purpose, one solves the set of boundary integral equations for a vacuum field in 
the same way adopted in the 2-D CCS method calculation. 
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2.1 Vector Laplacian 

The magnetic field B  is given by  B A  in terms of the vector potential A . 
The relationship between A  and the current density j  is described by the 
Poisson equation 

2
0  A j .                                                      (1) 

     In a 3-D Cartesian coordinate system, the two quantities in eqn (1) are 
expressed as ( , , )x y zA A AA  and ( , , )x y zj j jj . The vector Laplacian in this 

system has the simple relationship 
2 2( ) ( , , )k kA k x y z   A .                                 (2) 

     That is, the vector Laplacian can be given by a set of the scalar Laplacian of 
each Cartesian scalar component. In a cylindrical or spherical coordinate system, 
on the other hand, the expression of the vector Laplacian is not so 
straightforward. Because of this, the authors adopt the 3-D Cartesian coordinate 
system for the analysis to obtain the 3-D distribution of vector potential. 
However, it is easy to transform the result, once calculated in the Cartesian 
coordinate system, into the other coordinate systems. 

2.2 Hypothetical assumption of vacuum field 

One here assumes mathematically that there is no plasma current, i.e., vacuum 
everywhere outside the CCS. The effect of the actual plasma current is 
transformed into the hypothetical CCS. It is interesting to point out that at any 
point outside the plasma boundary the vector potential calculated under this 
assumption is exactly the same as the vector potential caused by the existence of 
the plasma current. The proof for this is given in the Appendix. 

2.3 Boundary integral equations 

Assuming that the current density term in eqn (1) is the coil current only, the 
corresponding boundary integral equations for a vacuum field are given by eqns 
(3) and (4), using the sensor signals and the coil current data. 

(i) For points i  on the CCS ( C ): 

*
*

,

1
. ( , , )

2
C
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i k k i
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(ii) For the magnetic sensor locations i : 

 
*
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k i
i k k i k i
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A d A W k x y z

n n






              
 L L L L .      (4) 

     The fundamental solution *

i  in eqns (3) and (4) satisfies the 3-D scalar 

Laplace equation with the Dirac delta function 
2 *

i i   .                                                        (5) 
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     The quantity ,k iW  in eqn (4) is the contribution of external coil currents to the 

vector potential at the point i , which can be calculated following  

0
, , ,

( )
( , , )

4 | |
L L

x i y i z i i L
L Coils i L

W W W d

 



  
 

j r
W

r r
                      (6) 

with ( )L Lj r  being the electric current density of the L-th coil. Equation (6) can be 

simplified for an axisymmetric tokamak device. That is, the coil contribution can 
be represented as a scalar quantity 

*

0 ( , ; , )L
L Coils

iW I r z a b 


                                      (7) 

using the L-th coil current LI  and the fundamental solution of the Grad-

Shafranov equation for the axisymmetric geometry [1, 2] 
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with 
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

  
.                                      (9) 

     The functions  K k  and  E k  are the complete elliptic integrals of the first 

and second kinds, respectively. 
     The detailed form of the operator L  in eqn (4) depends on the type of 
magnetic sensor. In the tokamak-type device, for example, L  is unity for 
magnetic flux sensors, while for magnetic field sensors it is given by 

1
sin sin cos sin sin cos

r x y z
       

   
  

L ,                   (10) 

where r  denotes the major radius,   the toroidal angle and   the sensor angle 
respectively, at the sensor position.  
     Equations (3) and (4) are discretized, coupled and can be expressed in a 
matrix form. Once all the values of the Dirichlet conditions ( kA ) and the 

Neumann conditions ( /kA n  ) on C  have been given by solving the matrix 

equation in a least square sense, the distribution of vector potential can be 
calculated using the boundary integral equation 

*
*

, . ( , , )
C

k i
k i i k

A
A A d k x y z

n n






  
      
                     (11) 

for arbitrary points ‘ i ’. 

2.4 Plasma boundary determination 

In a nuclear fusion device, the magnetic field lines lie on nested toroidal 
magnetic surfaces. A plasma current line also lies on such a magnetic surface. To 
determine the plasma boundary, it is convenient to introduce a so-called 
magnetic surface function,  , which satisfies [3] 
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0 B .                                                  (12) 

     One can define the plasma boundary as the outermost closed surface that is 
formed with the contour of  . For example, in tokamak-type axisymmetric 
plasma, the poloidal magnetic flux function   is defined as [1] 

 rA  ,                                                    (13) 

where r  denotes the major radius and A  the toroidal component of the vector 

potential. 

3 Numerical examples 

The ultimate goal of the authors’ research is to identify the shape of non-
axisymmetric plasma. Unfortunately a detailed model for such a complicated 
system has not yet been completed. As a second best, the case of axisymmetric 
plasma is dealt with to demonstrate the validity of the present 3-D CCS 
formulation. The following inverse analysis result is compared with the reference 
solution given by a direct analysis using the reliable equilibrium code SELENE 
[4] in JAEA. 
     One here assumes that 240 magnetic flux sensors and 960 magnetic field 
sensors are arranged outside the torus shape plasma. The Cauchy condition 
surface, which also has a torus shape, is placed within a domain that can be 
supposed to be inside the actual plasma. The ellipse in the centre of fig. 2 is the 
cross-section of the CCS on the r-z plane. Here the ellipse was set to have a 
major radius of 0.13m and a minor radius of 0.09m. This 3-D tube-shape CCS 
was divided into 16 discontinuous quadratic boundary elements, each of which 
has 9 nodal points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Contours of magnetic flux and the outermost magnetic surface. 
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     Introducing the external coil current contributions ,k iW  and the magnetic 

sensor signals ,k iAL , one can calculate kA  following eqns (3), (4) and (11). The 

magnetic flux function rA   can then be obtained for arbitrary points ‘ i ’. 

Thus, the outermost magnetic flux surface can be found by drawing contours of 
 . The solid lines in fig.2 are the obtained contours of magnetic flux. Note here 
that the contours drawn inside the plasma boundary have no physical meaning. 
Among the contours, however, the outermost closed curve represents the 
outermost magnetic surface, i.e. the plasma boundary. This reconstructed plasma 
boundary agrees well with the reference boundary profile (the dotted closed line 
in fig. 2) that had been assumed beforehand for the SELENE direct analysis. Coil 
locations outside the plasma are also found in fig. 2. 

4 Conclusion and further remarks 

A prototype of 3-dimensional CCS method code has been developed, in which 
the formulation is based on the 3-D distribution of vector potential. Before 
tackling complicated 3-D geometries, a preliminary 3-D test calculation was 
made for axisymmetric plasma. The results obtained here indicate that the new 3-
D method can also determine the plasma boundary shape accurately in the same 
way as the 2-D CCS method. 
     The authors’ future plan is to analyse the actual non-axisymmetric 3-D 
plasma in the LHD, which has a helical geometry. To realise this, the following 
problems should be solved: 

(i) The x-, y- and z-components in eqn (4) should be solved simultaneously 
for an actual magnetic field sensor. For a flux loop signal, eqn (4) might 
be further integrated along the flux loop. 

(ii) As it is difficult to derive mathematically the 3-D magnetic surface 
function   that satisfies 0 B  in a helical system, one needs to seek 

a practical way of drawing the magnetic field line that is tangential to the 
field vector. 

(iii) Further, the rotational symmetry (not axisymmetry), which is peculiar to 
LHD, should be incorporated into the boundary integral formulation in 
order to reduce the number of unknowns. 
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Appendix:  validity of the vacuum field assumption for the 
plasma region  

The proof shown below is written in terms of vector potential. Kurihara 
originally gave the proof in terms of magnetic flux in his work [5]. 
     Now consider the domain C P  that is sandwiched between the plasma 

boundary ( P ) and the CCS ( C ), as illustrated in fig. 3. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: The domain C P  between P  and C . 

(i) Vector potential caused by the existence of plasma current: 

The boundary integral equation in this case is written in the form 
*

* *
, 0 ,d ( ) d
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i k i i k k i k i

A
c A A j W

n n


  

 

  
       
  .             (A1) 

By adding 
* *
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k i k i
i k i k
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 
 

 
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to the RHS of eqn (A1), one obtains 
*

* # #
, , ,d
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k i
i k i i k k i i k i
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c A A W c A
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

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where the quantity # #

,i k ic A  is given by 

*
# # * *

, 0d ( ) d
C P C P
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i k i i k k i
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     It should be noted that # 0ic   for any point outside C P . Equation (A1) can 

then be transformed into 
*
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that has no term related to the plasma current. 

C  

P  
C P  

(Outside P ) 

Point i  

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

Mesh Reduction Methods  403



(ii) Vector potential when assuming a vacuum field for the plasma region: 

The CCS method is based on the boundary integral equation for a vacuum field 
*

*
, ,d

C

k i
i k i i k k i

A
c A A W

n n
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


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 ,                      (A6) 

which has no inhomogeneous term related to the plasma current. By adding 
* *

* *d d 0
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k i k i
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 
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to the RHS of eqn (A6), one obtains 
*
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with 
*
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, d
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     The value of #

ic  in eqn (A9) must be zero for any point outside C P . Thus 

one obtains 
*

*
, ,d

P
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i k i i k k i

A
c A A W

n n






  
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 .                    (A10) 

(iii) Conclusion 

As the RHS of eqn (A10) is exactly the same as the RHS of eqn (A5), it is 
concluded that eqn (A6) is identical to eqn (A1), i.e., , ,k i k iA A  . That is, the 

vector potential calculated under the assumption of a vacuum field even for the 
plasma region is exactly the same as the vector potential caused by the existence 
of plasma current. 
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