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Abstract  

This paper presents recent accomplishments of the development of the Boundary 
Element Method (BEM) for nonlinear waves around offshore structures and 
resulting wave forces. In order to investigate the capability of the present 
method, the nonlinear diffraction problem of a truncated circular cylinder is 
simulated. It is found that the present method is fairly accurate for wave forces 
and run-ups when compared with experimental results and also with other 
numerical results.  
Keywords: BEM, nonlinear waves, offshore structures, nonlinear diffraction. 

1 Introduction 

Nowadays, activities for marine gas and oil exploration move continuously into 
deeper ocean year by year. In order to design offshore structures for ultra deep 
sea, wave forces on offshore structures must be predicted with high accuracy. A 
number of theoretical, numerical and experimental studies have been developed 
for this purpose, but it seems that there still remains uncertainty to some extent.  
     In order to deal with nonlinear waves and resulting wave forces for high 
waves, it is necessary to apply a nonlinear method rather than the conventional 
linear theory. It is debatable whether nonlinear solutions based on the 
perturbation method are applicable for steep waves. It is also obvious that 
experimental studies in offshore basins are expensive for the preliminary design 
stage. Therefore, it is commonly accepted that numerical methods are 
appropriate for evaluating nonlinear wave forces on a body in large waves. Thus 
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the present study is focused upon the numerical method. Hence the present paper 
is aimed to investigate the capability of the present numerical method, namely, 
the so-called a BEM-based numerical wave tank technique (Boo and Kim [1], 
Kim [10]), for the prediction of nonlinear wave forces and run-ups on offshore 
structures. 
     The numerical methods widely used in practice are based upon the usual 
assumption of an ideal fluid, and higher-order boundary elements as a field 
solver. This is partially justified because most successes in simulating nonlinear 
free surface waves have been relying upon boundary elements. It is also known 
as the numerical wave tank technique, which is conceived as a promising tool for 
predicting the nonlinear hydrodynamic behavior of offshore structures (Kim 
[10]). 
     Since the pioneering work of Longuet-Higgins and Cokelet [13] on spatially 
periodic nonlinear waves in two dimensions, many studies have been made on 
this kind of problems. To name a few, Dommermuth et al. [3] successfully 
calculated plunger-type waves within the framework of potential theory. Xü [22] 
investigated the kinematics of three-dimensional plunging breakers by using bi-
quadratic boundary elements as an extension of Longuet-Higgins and Cokelet 
[13]. Nonlinear diffraction forces are reported in the literature such as Ferrant [4, 
5], Boo and Kim [1], etc. Grilli and his colleagues have been trying to develop 
an efficient BEM for nonlinear wave evolution as shown in Grilli et al. [8], 
Guyenne and Grilli [9], and Grilli et al. [7], etc. 
     It is worthwhile to mention the paper written by Kristiansen et al. [12] in 
connection with the present paper. They tried to verify the conventional design 
tool of BEM in predicting diffracted wave elevation around a vertical circular 
cylinder. Applicability and shortcomings of the method were suggested. 
     The present paper is organized as follows. First, we present the mathematical 
formulation of the model with numerical formulation. Finally, we apply the 
method to the problem of nonlinear waves around the truncated circular cylinder. 
We compare the numerical results with those of experiments and other 
computation. 

2 Mathematical formulation 

We assume the fluid is incompressible and non-viscous, and also the flow is 
irrotational. So, we can define the velocity potential, as the scalar 
function, ),( tx


 , of spatial variables, ),,( zyxx 


, and time variable, t . The 

velocity potential is related to the fluid velocity vector, ),,( wvuu 


by u


, 
where means the gradient operator. Thus, mass conservation becomes 
Laplace’s equation for the potential in the fluid domain, )(t , 

0),(2  tx


                    (1) 
     The boundary of the fluid domain is composed of the free surface, body 
boundary, and far field boundaries. Appropriate boundary conditions (i.e., 
Dirichlet or Neumann) are stated in the below. 
     The kinematic and dynamic free surface conditions are expressed in an 
Eulerian representation as, 
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where denotes the vertical position of the free surface as a function of the 
horizontal position and time, say, ),,( tyx  . The operator H means the 

horizontal component of the gradient operator. The constant g is the gravitational 
acceleration and  the fluid density. ap is the atmospheric or applied pressure on 

the free surface. Due to the local movement of the collocation points, boundary 
condition (3a) must be modified as follows. 
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     The body boundary condition states that the normal velocity of the fluid 
particle on the body boundary is equal to the normal component of the velocity 
of the body, 

nVn

                           (4) 

where ),,( zyx nnnn 


is the outwards unit normal vector, andV


is the body 

velocity, which is either given by the specified motion of the disturbance or 
obtained from the body equations of motion. This condition can also be used for 
wave-making boundary in the vertical upstream side. On the bottom boundary 
and other stationary parts of solid boundary, no-flow boundary condition is 
prescribed. 

3 Solution methodology 

3.1 Boundary element method 

The bi-quadratic BEM of Sung [18] and Sung et al. [19] is utilized in numerical 
solution of the governing equation, Eq. (1), with time-dependent nonlinear free 
surface boundary conditions Eqs. (2) and (3). In this paper, we briefly restate the 
principal features of the method and its implementation. 
     In the first place, the Green’s second identity transforms Laplace equation 
into the well-known boundary integral equation, 
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where )(x


 is the normalized interior solid angle at point x


, rxG  4/1),( 


is the 

free-space Green’s function, where rr


 x


  is the distance from the source 

point


to the field point x


. An analytic expression for the solid angle can be 
obtained by considering a trivial solution of the Laplace equation, to say a 

constant function, as    dnxGx /),()(


. This expression is substituted into 

the boundary integral equation to obtain an improved form of the integral 
equation as follows. 
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     It can be seen that the singularity of the first term is reduced by order of one, 
which means from the numerical point of view, all the integrations become 
regular through this improvement. 
     From the accuracy point of view, the higher the order of elements becomes, 
the more accurate the obtained solution will be. Practice, however, compels us to 
take a compromising order of approximation. As a result, “bi-quadratic 
elements” using 33 nodes are taken as shown in Figure 1 in which a typical bi-
quadratic elements and the parameter space are sketched. 

 

 

Figure 1: Bi-quadratic element and its parameter space: (a) continuous case, 
(b) single-edge case, (c) double-edge case 

     For appropriate treatment of the intersection line between two different 
boundaries, discontinuous elements are utilized around corners and edges as 
Brebbia [2] indicated, while conventional continuous elements are used 
elsewhere. The single-edge discontinuous elements are pertinent around edges or 
intersection lines and the double-edge discontinuous elements are suitable 
around corners. Throughout the computations, freedom nodes are taken at 

3/2d  for both kinds of discontinuous elements. 
     Using the isoparametric bi-quadratic elements, geometry and variables on 
each element can be expressed in terms of basis functions 
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where x


is the position vector of the boundary surface, the subscripts in variables 
designate the local node numbers, the ordering of which is depicted in Figure 2. 
Superscripts denote the number of the element on which variables are defined. 
Function mN is the product Lagrangian basis function, and jE is the jth element. By 

using this expression, the boundary integral equations are discretized. 
     To obtain the algebraic equations for the velocity potentials and their normal 
derivatives at each nodal point, the collocation method is applied. In this paper, 
collocation points correspond to nodal points. The discretized and collocated 
boundary integral equations form the following linear system of equations. 
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where )(j
k ixD


and )(j
k ixS


 are the influence coefficients due to the doublet and 

source distribution. 
     The numerical integration for influence coefficients due to source and doublet 
distribution is as follows: (1) regular integrals are calculated by a bi-directional 
Gauss-Legendre quadrature method; (2) singular integrals, in which the distance 
vanishes at the collocation point are completely desingularized by means of the 
rectangular polar coordinates mapping on each subdivision of parameter space 
and then Gauss-Legendre numerical integration is applied. 

3.2 Numerical radiation condition 

It is well known that the treatment of the radiation condition affects the entire 
solution and that it is closely related with the method of generating nonlinear 
waves in a numerical wave tank. Several kinds of numerical radiation condition 
are proposed for three-dimensional nonlinear diffraction problem. They may be 
categorized into two groups: wave damping zone technique (Boo and Kim [1], 
Kim et al. [11], Ferrant [4]) and decomposition method (Ferrant [5]). 
     In this paper, the following new radiation condition is proposed by combining 
these two methods as follows. 
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where )y,x(  is named the Homotopy parameter and   is a time constant to 
retrieve the incident waves. These equations must be understood as time-
dependent boundary conditions for a given grid point ),,( zyxx . The subscript 
RF denotes a quantity of the Rienecker and Fenton wave (Rienecker and Fenton 
[16]).  
     The RF waves are given by 
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where c  and k  are the phase speed and the wave number, respectively. The 
coefficients jB , )N,,1,0(a jj  are determined so that the nonlinear free 

surface conditions and compatibility conditions are satisfied usually when the 
wave height and the wave period are specified. The error can be controlled by 
the truncation order N only, which is 40 in the present computation. 
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     Specifically, )y,x( is determined by the horizontal distance xyR  from the 

center of the cylinder in this paper as follows. 
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     The three zones above are named as the D (Diffraction) zone, the T 
(Transient) zone, and the RF (Rienecker and Fenton wave) zone. At the RF zone, 
equations (9) and (10) assert that the solution converges to the RF wave after 
several wave periods. The value of the RF wave potential is specified on 
radiation boundaries at all times. Around the body, however, the potential and 
the wave elevation are gradually set to zero at 0t   in order to avoid impulsive 
responses. The present method is compared with the work of Ferrant [4]. This 
scheme is able to describe nonlinear diffraction waves near the body accurately, 
and the incident waves are well recovered away from the body. 

3.3 Evaluation of the wave forces and moments 

In order to evaluate the wave forces and moments, we calculate as follows. 
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     Using Leinitz’ rule, we can transform the surface integral of the time 
derivative of the velocity potential into sum of the time derivative of the surface 
integral of the velocity potential and the line integral term that is defined along 
the intersection line of the free surface and the body boundary. 
     A more orthodox method of solution is the use of the concept of acceleration 
potential. The time derivative of the velocity potential, t / , is of great 
concern in time simulation of fully nonlinear free surface waves around the 
offshore structures, particularly for the wave forces prediction. It can be 
estimated by using the backward time difference formula, which however leads 
to inaccurate results and unstable solutions. According to our understanding, we 
can also utilize the concept of the acceleration potential, 

2//),(  ttx


which postulates the continuity of the normal 
acceleration. This idea was originally suggested in series of Tanizawa’s works 
[21]. In this paper the procedure given by Tanizawa is borrowed and some 
implemental issues are explained. Thus we start from the boundary condition for 
the acceleration potential as follows. 
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where A


means the acceleration vector on the body boundary, which is zero in 
this case. The expression for the second term is stated for two-dimensions in 
Tanizawa [21]. For the three dimensional case, the equation of the particle 
acceleration in Fochesato et al. [6] can be utilized for the present purpose.  
Interested readers can refer to the paper by [6]. 
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3.4 Miscellaneous aspects 

In this study, the linear system of algebraic BEM equations is solved using the 
iterative solver GMRES (Generalized Minimal RESidual) originally devised by 
Saad and Schultz [17] which is known as a NlogN method, where N  is the 
degree of freedom. For the time integration of the time-dependent system, the 
fourth-order Runge-Kutta (RK4) method with minimum truncation error 
(Ralston and Rabinowitz [15]) is adopted by considering accuracy and stability. 

3.5 Perturbation-based solution method 

In order to investigate systematically the overall capability and performance of 
the fully nonlinear method, the present study utilizes the perturbation-based 
solution scheme. Traditionally in it, the whole solution is expressed as follows. 

...)2(2)1( TOH                         (16) 
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where IkA  is known as smallness parameter, when k is the wavenumber and 

IA the amplitude of incident waves. The superscript means the order of the 

solution. ... TOH means higher-order terms. As well-known, the free surface 
boundary conditions for the first-order of solution can be written as follows. 
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     The second-order ones are of the following form. 
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     Here the atmospheric pressure has been set to zero for brevity. 
     The incident wave potentials for each order are known as: 
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     The solution can be obtained by decomposition of the solution into the sum of 
incident and scattered parts. In the present study, the first- and second-order 
solutions can be compared with the fully nonlinear results. 

4 Numerical results 

While the present study is under development, this paper contains the first-order 
computation only. The second-order and fully nonlinear simulations are 
postponed to near future. Figure 2 shows the grid systems for the first-order and 
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second-order solutions. An appropriate grid should resolve the evolution of 
incident and scattered wave for each order of solution, and so each grid has its 
own dimension. 
     An example of free surface shape is shown in Figure 3. The scattered part and 
total waves surface are separately displayed.  
 

 

Figure 2: Grid systems for the first-order (left) and second-order (right) 
solutions. 

  

Figure 3: Free surface shape at Tt 14 of the first-order solution for the case 
of 657.0kR  (left-scattered part, right-total=incident+scattered). 
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Figure 4: Time series of wave runups for the case of 657.0kR (line: 0 , 
line with circle: 4/  , line with diamond: 2/  , line with 
triangle: 4/3  , line with cross:   ; the angle is so defined 
that    corresponds to the lee side of the cylinder). 
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Figure 5: Time series of horizontal wave force for the case of 657.0kR . 
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Figure 6: Comparison of wave runup at upstream point of the cylinder 
( Rr  , 0 ) with numerical computation by FEM (Nam et al. 
[14]) and experiment (for the wave steepness, 30/1/ H , Sung 
et al. [20]). 
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Figure 7: Comparison of horizontal wave force with numerical computation 
by FEM (Nam et al. [14]) and experiment (Sung et al. [20]). 

     Time series of wave elevations along the cylinder surface for the case of 
657.0kR are shown in Figure 4. Corresponding time series of horizontal wave 

force behaves as in Figure 5. 
     For qualitative comparison, a series of experiments has been carried out, and 
a detailed description of the experimental study can be referred to Sung et al. 
[20]. Comparison of present first-order computation with experiments is shown 
in Figure 6 and Figure 7. The experimental results were obtained for the case of 
intermediate wave steepness, 30/1/ H , which can be regarded as ‘linear case’. 
It can be concluded that the present method is fairly accurate for wave forces and 
run-ups on the whole when compared with experimental results and also with 
other numerical results. 

    

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

Mesh Reduction Methods  371



     The second-order and fully nonlinear computation is postponed, and lastly the 
need to incorporate nonlinearity into the numerical solution is demonstrated. 
Figure 8 shows nonlinearity of the wave runup, wave forces, and moment, where 
time series behaves very differently from a pure sinusoidal pattern. Higher-order 
components seem to be strongly inherent in this case of 657.0kR  and 

10/1/ H , which will be analyzed more thoroughly with fully nonlinear 
computation.  
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Figure 8: Experimental results of nonlinearity of the wave runup, wave 
forces and moment for the case of 0.762kR (line: 50/1/ H , 
line with circle: 30/1/ H , line with diamond: 16/1/ H , line 
with triangle: / H

5 Summary and concluding remarks 

This paper presented recent accomplishments of the development of the 
Boundary Element Method (BEM) for nonlinear waves around offshore 
structures and resulting wave forces. Basic characteristics of the present method 
of solution were briefly stated with a state-of-the-art review on computational 
methods of prediction for nonlinear wave forces on offshore structures by using 
BEM. The perturbation-based first- and second-order solution methods were 
stated for comparison with the fully nonlinear scheme. In order to investigate the 
capability of the present method, diffraction problem of a truncated circular 
cylinder is simulated. The present paper includes the numerical results with first-
order solution only, while second-order and fully nonlinear methods are being 
developed and complete solutions are expected to come up soon. It is found out 
that the present method is fairly accurate for wave forces and run-ups on the 
whole when compared with experimental results and also with other numerical 
results. It is also demonstrated that highly nonlinear features manifest clearly for 
incident waves with high steepness, i.e. 16/1/ H or 10/1/ H . These 
phenomena will be dealt with more thoroughly by fully nonlinear simulation in 
near future.  
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