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Abstract 

In an earlier study, three methods, the meshless, the boundary element (BEM), 
and the weighted finite difference (WFDM) were developed to obtain 
numerically stable and convergent results for the concentration distribution and 
flow around a DO-supplying machine in a water reservoir. The poor-oxygen 
layer, which is short of or lacks dissolved oxygen (DO), sometimes causes 
pollution in the water in a reservoir. An attempt was made to ameliorate the 
concentration of oxygen in the lower layer of the reservoir by using a machine 
that supplies DO. Field studies in a few water reservoirs led to reports of a 
phenomenon in which the distance reached by the DO-rich water was more than 
300 metres in spite of the very low velocity of the water flow. To numerically 
represent the phenomenon described above, we would like to investigate the 
numerical solutions of the meshless method, the BEM, the finite element method 
(FEM), and the finite difference method (FDM) and compare them with the 
observed results. With reference to the velocity vectors of the water flow 
calculated by the FDM, the BEM, and the FEM and observed in our model 
simulation described above, the effect and accuracy of the alternative meshless 
method were estimated. 
Keywords: meshless method, boundary element method, finite element method, 
finite difference method, and flow and concentration in water reservoirs. 

1 Introduction  

By using a machine that supplies DO (dissolved oxygen), we successfully 
ameliorated the concentration of oxygen in the lower layer of water areas, such 
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as a water reservoir or the sea (Sakamoto et al. [1]). Our DO-supplying machine 
dissolved the high concentration of oxygen (about 100 mg per litre: [mg/L]) in 
the water of the tank of the machine at a depth of about 50 metres. The DO-rich 
water flowed out to the lower layer of the water area in a horizontal direction. 
The observed velocity of the water flow was considerably small (almost 
0.1 m/sec [metre per second]); however, the distance reached by the DO-rich 
water was observed to be more than 300 metres in the B reservoir. To obtain 
evidence to explain the phenomena, the model simulation of a water reservoir 
was investigated and newly reconstructed in our laboratory so that the observed 
results of the model simulation could represent the phenomena described above; 
in this way, we obtained some observed velocity vectors and the distributions of 
the DO concentration in the model. The analogy between the differences of the 
water temperature and the DO concentration was adopted and expected to 
reproduce the horizontal direction of the water flow and the convective diffusion 
of the DO of the water reservoir into our model simulation. The meshless 
method, the BEM, the FEM, the FDM, and the WFDM were newly investigated 
and applied to numerically simulate the phenomena. They were then compared 
with the observed data obtained in the model simulation. 

2 Governing equations  

Three equations, i.e., continuous, Navier-Stokes (N-S), and convective -diffusion 
equations, govern the flow and diffusion in a water reservoir. In the vertical (x1, 
x2) plane, as illustrated in fig. 1, these equations are shown as follows: 
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where u1 and u2 describe the velocities of the x1 and x2 directions, respectively, P 
is the pressure, g is the gravity acceleration, ν is the kinematic viscosity, C is the 
concentration of dissolved oxygen (DO), and D1 and D2 are the diffusion 
coefficients of the x1 and x2 directions, respectively. Here, C,1 and C,2  describe 
the derivatives of C differentiated with respect to x1 and x2, respectively, C,11 and 
C,22  are the derivatives of C differentiated twice with respect to x1 and x2 , 
respectively. The density ρ is connected to the DO concentration C, as written in 
Equation (4), where ρ0 and ρDO describe the densities of the pure water and the 
dissolved oxygen, respectively. The velocity    , which is shown in the above 
Equation (3), is defined as written in Equation (5):                   
 
 

ρ = ρ0 + C10−6(1− ρDO /ρ0 )      

2u′

u1, 1 + u2, 2 = 0 
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2u′ = u2 + (1− ρDO /ρ0 )ρgt = u2 + αgt     (51) 
 

2tt u ′∆+ = tu2+ αg∆t   in the finite difference expression   (52) 
 
where 2tt u ′∆+   and tu2 are the velocities at time (t+∆t) and time (t) in the vertical 
direction, respectively. The second term (αg∆t) of the right-hand side of 
Equation (5) means that the DO concentration increases the velocity of the 
vertical direction, and α describes the density of the liquid that dissolves DO. 
Here, the velocity increase is caused by the liquid density ρ, the gravity 
acceleration g, and the time increment ∆t. We expect that the velocity increase in 
the convective diffusion can be a device or evidence to explain the phenomenon 
in which the distance reached by the DO-rich water was more than 300 metres in 
spite of the very low velocity of the water flow. 

3 Application of the meshless method 

We applied the meshless method to a flow analysis in the steady state and a 
concentration analysis in the unsteady state in a water reservoir, as shown in 
fig. 1. The penalty method was used so that the pressure terms would be 
eliminated in the N-S equations and the difficulty of the pressure boundary 
conditions would be avoided in the meshless method (Sakamoto et al. [1]). 

Figure 1: Analytical domain and concept of a DO-supplying machine in a 
water reservoir. 

3.1 Meshless method for flow and concentration analyses 

3.1.1 Simultaneous equations for the meshless method of flow analysis  
Using u1 and u2 at time (t-∆t) and adopting the penalty method, the following 
expression is obtained (Kanoh et al. [2]): 
 

0)u2uu()uu(uuuu 11,112,222,112,211,12,121,11 =++ν−+λ−⋅+⋅   (61) 
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0)u2uu()uu(uuuu 22,212,111,222,212,12,221,21 =++ν−+λ−⋅+⋅   (62) 
 

where u2,12  is the derivative of u2,1 differentiated with respect to x2. The unknown 
values u1 and u2 are expressed as Equation (7) using the global expansion 
function Xj (= (r2+c2)−1/2) of the mesh-free RBF collocation method (Divo et 
al. [3]), 

0)u2uu()uu(uuuu 22,212,111,222,212,12,221,21 =++ν−+λ−⋅+⋅  (71), (72) 
 

where r equals {(x-xj)+(y-yj)}1/2 and c is the constant. Solving the simultaneous 
Equation (8), the unknowns (αj and βj) can be obtained.   
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Substituting the obtained values of αj and βj into Equation (7), the values of u1 
and u2 in the steady state can be calculated using the meshless method.   

3.1.2 Meshless method formulation for concentration analysis 
Here, we deal with the concentration analysis in the unsteady state in the area 
surrounding the DO-supplying machine. First, the concentration in the steady 
state is expressed as Equation (9) with Equation (10) (Kanoh et al. [2]). 
 

C = γj Xj = βj /(r2+c2)1/2     (9) 
 
 

(10) 
 

Secondly, the transient convective-diffusion equation is rewritten as follows:  
 

C,t  + L(C) = 0                                                   (11) 
 
where C,t is the time derivative of C and L(C) has the terms of convection and 
diffusion in the steady state. Thirdly, applying the finite difference scheme, 
Equation (11) yields 

where Ct+∆t and Ct are the concentrations at time (t+∆t) and time (t), respectively, 
and Lt+∆t and Lt are the terms of convection and diffusion at time (t+∆t) and 
time(t), respectively. Finally, using Equations (9), (10), and (13), the meshless 
method can analyse the DO concentration in the unsteady state.                      
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3.2 Boundary conditions and boundary discretisation 

Both the boundary conditions and the boundary discretisation for the flow and 
concentration analyses have been previously proposed for the meshless method, 
the BEM, the FEM, the FDM, and the WFDM (Sakamoto et al. [1], Kanoh et 
al. [2]).  

4 Reconstructed model simulation 

We reconstructed a simulation model in our laboratory and obtained some 
observed velocity vectors and the distributions of the DO concentration in the 
model. In reference to the observed results, we tried to obtain some evidence to 
explain the phenomena that the distance reached by the DO-rich water was more 
than 300 metres in a reservoir in spite of the small velocity of the water flowing 
out. For this purpose, it was necessary to reproduce, in our model simulation, the 
density flow and convective diffusion of the DO concentration in the lower layer 
of a water reservoir at a depth of about 50 metres. 

4.1 Objective of the reconstruction and simulation technique 

There were two objectives in our reconstructed model and simulation technique. 
First, an outlet was set on the lower part of the left side wall of the model so that 
we could reproduce the horizontal direction of water flow of the lower layer of 
the water reservoir. Secondly, the density difference between 10 mg/L and 100 
mg/L in the DO concentration was changed to the density difference of the water 
temperature, since it was very difficult to make up the high concentration of DO 
of 100 mg/L in our model simulation at a depth of about 0.8 metres. Referring to 
Table 1, the density difference between 10 mg/L and 100 mg/L in DO was equal 
to the difference of the water temperature between 15 degrees centigrade 
(15.00°C) and 14.55 degrees centigrade (14.55°C). We iced the water that 
flowed out of the tank of the model and could easily control the difference of the 
water temperature between 15.00°C and 14.55°C. The analogy between the  
 

Table 1:  Density difference between 100 mg/L and 30 mg/L in DO and that 
of the water temperature among 15.00, 14.87, and 14.55 (°C).   

 
 

 B water reservoir 

(waterdepth:50m)

Our model 

simulation 

(water depth:0.8m) 

Maximum DO value (mg/L) 100 30 

Water head (Kg/cm2) 5.0 0.08 

Value of 

(using Equation (4): at 15°C) 

0.999127+0.0001 0.999127+0.00003 

Water temperature that corresponds 

to the above value of  (°C) 

14.55 

(=15.0-0.45) 

14.87 

(=15.0-0.13) 

Value 

Place
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differences of the water temperature and the DO concentration was adopted and 
expected to reproduce the horizontal direction of water flow and the convective 
diffusion of the DO of the water reservoir into our model simulation.  
     Here, 5 Kg/cm2 (kilogram per square centimetre) corresponds to 0.5 MPa 
(megapascal) in the international system of units (SI). 

5 Results and discussion 

As described above, we reconstructed a new simulation model in our laboratory 
and were able to observe some velocity vectors and obtain the distributions of 
the DO concentration in the model. In reference to the observed results, we tried 
to obtain some evidence to explain the phenomena that the distance reached by 
the DO-rich water was more than 300 metres in a reservoir in spite of the small 
velocity of the water flowing out. The numerical results of the meshless method, 
the BEM, the FEM, and the WFDM are also discussed in this section in order to 
obtain some evidence to explain the phenomena. 

5.1 Observed values in a model around a DO-supplying machine 

5.1.1 Flow velocity in a model 
Fig. 2 is an illustration of the velocity vectors caused by a DO-supplying 
machine in a reservoir model visualised using aluminium flakes, a strobe light, 
and a digital VTR. In the area neighbouring the outflow point, the velocity 
vectors in the horizontal direction were distinguished, and the values of the 
velocities were larger than those in other areas. In other areas, which were 
toward the centre or more than 0.9 metres from the outflow point, the velocity 
values became less than 1cm/sec. 
 

 
 

Figure 2: Observed velocity vectors around a DO-supplying machine (DO: 
30mg/L). 

5.1.2 Concentration distribution of DO in a model 
Fig. 3 is an illustration of the concentration distribution caused by a DO-
supplying machine in a reservoir model visualised using a pigment (methylene 

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

336  Mesh Reduction Methods



blue) and a VTR. The speed of diffusion of the DO-rich water (DO: 100mg/L) 
was obviously quicker than that in DO-poor water (DO: 10mg/L; the figure was 
omitted in this paper), and the observed direction of the diffusion was mainly 
down or horizontal. 
 

1sec 

10sec30sec

60sec

120sec

1.4m 
 

 

Figure 3: Observed areas of diffusion of pigment (DO: 100mg/L). 

5.2 Flow analysis in the model of a water reservoir 

5.2.1 Meshless method calculation of the flow in the model 
Fig. 4 is an illustration of the velocity vectors in the model of a water reservoir 
calculated by the meshless method, in which the number of the points in the 
meshless method is 3,201 and the three values of λ, C, and ν are 1,000.0, 1.0, 
and 0.001, respectively. The stability and convergence of the flow analysis 
around the machine to supply DO using the meshless method seemed 
satisfactory. 

5.2.2 FEM, BEM, and FDM calculation of the flow in the reservoir model 
Fig. 5 is an illustration of the velocity vectors in the reservoir model calculated 
by the FEM, in which the number of elements in the FEM is 3,072 and the two 
values of λ and ν are 1,000.0 and 0.001, respectively. The penalty method was 
introduced, as in the meshless method. The stability and convergence of the flow 
analysis using the FEM seemed satisfactory. The stability and convergence of 
the flow analysis using both the BEM and the FDM also seemed satisfactory (the 
figures to illustrate those velocity vectors have been omitted). These three 
methods could yield qualitatively similar solutions to the true results of several 
flow problems that were observed in simulation models constructed in our 
laboratory. 
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Figure 4: Velocity vectors using the meshless method (number of the points: 
3,201). 

 
 

Figure 5: Velocity vectors using the FEM (number of the points: 3,201). 

5.3 DO concentration analysis in the model of a water reservoir 

5.3.1 Time required by the four numerical methods for the DO analysis 
Table 2 shows the time required by the four numerical methods for analysing the 
DO concentration in the model. When the number of the divisions of the 
analytical domain was 3,201, the FDM, the BEM, and the meshless method 
needed almost 7, 10, and 6 times the time required for the FEM, respectively. 
For the purposes of saving time, the FEM was the best; the meshless method was 
second best; the FDM was the third best; and the BEM was the poorest 
performer. On the other hand, for the purpose of saving the time and labour 
required for preparing the input data, the meshless method was the best, the 
FDM was second best, the FEM was the third best, and the BEM was the worst. 

5.3.2 FEM calculation of the concentration distribution 
Figs. 6(a) and (b) are illustrations of the concentration distribution calculated 
using the FE method, in which the number of divisions in the FEM is 3,201 and 
the two values of λ and ν are 1,000.0 and 0.001, respectively. Comparing 
fig. 6(a) (not adopting the term:  αg∆t) with fig. 6(b) (adopting the term:  αg∆t), 
it was noted that the term (αg∆t) of the velocity increase brought the areas of the 
DO distribution down in the FEM analysis. 
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Table 2:  The time required by the four methods for analysing the unsteady 
convective diffusion of DO for 60 seconds in a model of a water 
reservoir. 

.

10.1

1.00

Numerical method 

BEM

0.1 

1.0 

FEM 

FDM

Meshless method 6.03 

7.00

20

1.0 

Relative computational time
Number of divisions:

3,201  

Time  

increment: 

t (sec) 

 
 

 
(a) 

 

 
(b) 

 

Figure 6: (a) DO-concentration distribution calculated using the FEM 
without the term (αg∆t) [t=420sec]. (b) DO-concentration 
distribution calculated using the FEM with the term (αg∆t) 
[t=420sec]. 

5.3.3 Meshless calculation of the concentration distribution  
Fig. 7 is an illustration of the concentration distribution calculated using the 
meshless method, in which the term of the velocity increase (αg∆t) is adopted, 
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the number of divisions in the meshless method is 3,201, and the value of  ν is 
0.001 (the figures to illustrate the concentration distribution calculated without 
the term (αg∆t) have been omitted). Referring to figs. 6 and 7, the solutions of 
the meshless method showed the same tendency as those of the FEM in this 
problem. We considered that the convergence and accuracy of the FE, the FD, 
the BE, and the meshless methods for this problem were satisfactory (the figures 
to illustrate the concentration distribution calculated using the FD and the BE 
methods have been omitted). 
 

 

Figure 7: DO-concentration distribution using the meshless method with the 
term (αg∆t) [t=420sec]. 

 
 

             t = 1sec              t = 10sec                                 t = 60sec 
 

Figure 8: DO-concentration distribution using the WFDM with the term 
(αg∆t). 

5.3.4 WFDM calculation of the concentration distribution 
Fig. 8 is an illustration of the concentration distribution calculated using the 
WFDM, in which the term of the velocity increase (αg∆t) is adopted, the number 
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of divisions in the WFDM is 25,600, and the value of ν is 0.001 (the figures to 
illustrate the concentration distribution calculated without the term (αg∆t) have 
been omitted). We considered that the convergence and accuracy of the WFDM 
for this problem were satisfactory. It seemed that the term (αg∆t) of the velocity 
increase could make the areas of the diffusion wider in the vertical and flowing-
out directions and the speed of the convective diffusion higher than in the 
analyses of the WFDM when this velocity increase was not applied. 

6 Conclusion 

In summary, (1) the meshless method, the BEM, the FEM, the FDM, and the 
WFDM were newly investigated and applied to the analysis of the flow and 
convective diffusion in a water reservoir; (2) the stability and convergence of the 
five kinds of analysis using these methods described above seemed satisfactory; 
(3) in this paper, it was proposed that the DO concentration increased the 
velocity of the vertical direction, where the velocity increase was caused by the 
water density ρ, the gravity acceleration g, and the time increment ∆t; (4) the 
velocity increase could make the areas of the diffusion wider in the vertical and 
outflow directions and make the speed of the convective diffusion be higher than 
in the analyses of these methods when this velocity increase was not applied; (5) 
the analogy between the differences of the water temperature and the DO 
concentration was adopted and expected to reproduce the horizontal direction of 
the water flow and the convective diffusion of the DO of the water reservoir into 
our model simulation; (6) it seemed that the wide areas of diffusion and quick 
speed of convective diffusion could explain the phenomena in which the distance 
reached by the DO-rich water was more than 300 metres in spite of the very low 
velocity of the water flow. 
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