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Abstract 

The vibration of plates is important in many applications pertaining to 
mechanical, civil and aerospace engineering. Therefore, the vibration of plates is 
an important research area that has been studied by many researchers. To date, 
there are abundant plate vibration solutions available in the open literature based 
on Kirchhoff assumptions. The purpose of the present paper is free vibration 
analysis of thin circular plates by the indirect Trefftz method. In thin plate 
vibration problems, we will deal with the governing equation with the 
homogeneous boundary conditions. The Trefftz method basically employs the 
complete set of solutions satisfying the governing equation as the first step. To 
derive the boundary integral equation, either the reciprocity law, which is similar 
to those used in conventional BEMs, or the weight residual method can be used. 
The proposed approach has some merits when compared with other regular 
boundary element formulations reported so far. A main benefit for the Trefftz 
method is that it does not involve singular integrals due to the properties of its 
solution basis functions (T functions); thus, it can be categorized into the regular 
boundary element method. Besides, this advocated approach yields a solution 
that offers simultaneously the advantages of the classical FEM and BEM 
solutions, without having their drawbacks. Finally, several numerical examples 
are demonstrated to show the validity of the current approach. 
Keywords: indirect Trefftz method, boundary-type solution, free vibration, thin 
circular plates. 
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1 Introduction 

Plates with various boundary conditions are common components in many fields 
of engineering, especially in civil and mechanical engineering. With the wide 
application of plate structures, static and dynamic analyses of plates become very 
important. We consider various kinds of motion of plates. There is a free 
vibration, which occurs in the absence of applied loads but may be initiated by 
applying initial conditions to the plate. The free vibration deals with natural 
characteristics of the plates, and these natural vibrations occur at discrete 
frequencies, depending only on the geometry and material of the plates. Then, 
there is a forced vibration, which results from an application of time-dependent 
loads. Forced vibrations come in two kinds: a harmonic response, when a 
periodic force is applied to the plate; and a transient response, when the applied 
force is not a periodic force. The dynamic characteristics of the plate have a 
considerable effect on the overall structure performance. When the frequency of 
the external load matches the natural frequency of the plate, damage or 
destruction may occur. With this respect, the natural frequencies of the plates 
have been studied extensively for more than a century. Therefore, vibration of 
the plate is an important research area that has been studied by many researchers. 
     For the solution of a free-vibration problem, many well-developed numerical 
techniques such as the finite element method (FEM), finite difference method 
(FDM) and boundary element method (BEM) can be adopted. This paper is 
concerned with the free vibration analysis of thin circular plates by using of the 
indirect Trefftz boundary approach [1]. In the indirect formulation, the solutions 
of the problems to be solved are approximated by the superposition of the T-
complete functions. Then, the unknown parameters are determined so that the 
approximate solutions satisfy the boundary conditions. Although in recent years 
various boundary solution methods have been applied to the thick plate bending 
problem [2-4], in the present work, we will restrict ourselves to the indirect 
Trefftz boundary approach and extend the method to free vibration analysis of 
thin circular plate problems. 
     Basically, the Trefftz method consists in the solution of a partial differential 
equation by the superposition of a number of functions, themselves solutions of 
the homogeneous governing equation, appropriately scaled by a number of 
unknown parameters. These unknowns are then obtained from the approximate 
satisfaction of the boundary conditions by means of collocation or in a weighted 
residual sense. Trefftz-based formulations have been studied by several authors, 
such as Jirousek and co-workers (of which Jirousek and Wrobleski [5] give a 
thorough account), Cheung et al. [6], Jin et al. [7], Zielinski and Zienkiewicz [8], 
Zielinski and Herrera [9], and Freitas and Ji [10] amongst others. Reviews on the 
subject may be found in Zielinski [11], Kita and Kamiya [12] and Jirousek and 
Wrobleski [5]. 
     This paper is organized as follows. In section 2, the basic equations based on 
the Kirchhoff plate theory is explained in detail. Then, in section 3, the complete 
solutions and complete sets are shown. In section 4, the indirect Trefftz method 
is explained and in section 5, some numerical examples are shown to illustrate 
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the efficiency of the Trefftz method. Finally, in section 6, the conclusions are 
drawn, briefly. 

2 Fundamental equations of classical plate theory  

Consider a circular plate of thin uniform thickness (h) with isotropic material and 
radius a. The classical differential equation of motion for the transverse 
displacement w of a plate is given by [13]: 
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where )1(12EhD 23   is known as the flexural rigidity of the plate and E is 

Young's modulus, h is the plate thickness,  is Poisson's ratio,  is mass density 
of the plate material, t is time, and 224  , where 2  is the Laplacian 
operator. When free vibrations are assumed, the motion is expressed as 
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where ωi is the natural frequency (expressed in radians/unit time) and W(i)(r,θ) is 
its associated mode shape and a function only of the position coordinates. 
Substituting eqn. (2) into eqn. (1) yields 
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It is usually convenient to factor eqn. (3) into 
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Whence, by the theory of linear differential equations, the complete solution to 
eqn. (4) can be obtained by superimposing the solutions to the equations:  
 

0WkW )i(
1

2
i

)i(
1

2                                          (5) 

0WkW )i(
2

2
i

)i(
2

2                                          (6) 
 

where 
D

h
k i

2
i


 . Thus, the general solution to eqn. (4) in polar coordinates is:  
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Based on Hooke’s law and Kirchhoff’s assumptions, the bending and twisting 
moment–displacement relations are given by [13]: 
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Based on Kirchhoff plate theory, the shear forces–displacement relation can be 
obtained as: 
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Based on Kirchhoff plate theory, equivalent change of slopes of the normal and 
tangential about the midsurface is given as follow: 
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3 Complete solutions and complete sets 

Trefftz methods can be considered as the boundary-type solution procedure 
employing the regular T-complete functions satisfying the governing equations. 
Therefore, the input data generation is much easier than the domain-type solution 
procedures such as the finite element and the finite difference methods. 
Moreover, the formulations are regular and thus, much simpler than the ordinary 
boundary element methods employing the singular fundamental solutions. The 
complete solutions and complete sets corresponding to the governing equations 
(5) and (6) are used as weighting and/or trial functions. In the case of polar co-
ordinates, the T-complete solution of the homogeneous equation of the 
biharmonic eqn. (5) can be found using separation of variables [14]: 
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The T-complete solution of the eqn. (6) can be found using separation of 
variables [14]: 
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where r is the Euclidean distance from the origin to a domain point, and θ is the 
angle between the x-axis and the radial vector from the origin to the domain 
point. The special functions used in the expressions from eqn. (15) are Bessel 
functions of the first kind ( )rk(J in ) and the second kind ( )rk(Y in ). Also, the 

special functions used in the expressions from eqn. (16) are modified Bessel 
functions of the first kind ( )rk(I in ) and the second kind ( )rk(K in ). The 

coefficients of Bessel functions in equations (15) and (16) determine the mode 
shape and are solved for from the boundary conditions. 
     If the boundary conditions possess symmetry with respect to one or more 
diameters of the circle, then the terms involving sin (nθ) are not needed. For 
solid circular plates, the terms involving )rk(Y in and )rk(K in in equations (15) 

and (16) must be discarded in order to avoid singularity of deflections and 
stresses (i.e., avoid infinite values) at the plate centre, r = 0. Then, the T-
complete sets of solutions for interior domain problem ( ar0  ) are as 
follows: 
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4 Indirect Trefftz formulation 

The indirect formulation, considered as the original formulation presented by 
Trefftz in 1926, the solution of the problem is approximated by the superposition 
of the functions satisfying the governing equation and then, the unknown 
parameters are determined so that the approximate solution satisfies the 
boundary condition by means of the collocation, the least square or the Galerkin 
method [12]. In this approach, the trial functions are expanded in terms of a 
sequence of linearly independent Trefftz functions and a discrete set of unknown 
coefficients a. However, the weighting functions may be chosen in different 
ways. When the Dirac delta function is used, the method leads to the Trefftz 
collocation method (TCM). If the Trefftz function is employed as the weight 
function, the method leads to the Trefftz Galerkin method (TGM) [15]. To 
illustrate the weighted residual procedure [16], we shall consider the 
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determination of a function (u), which may be a quantity within a region Ω 
bounded, by Γ, defined by the general equation: 
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subject to the boundary conditions: 
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These conditions are obtained from natural boundary and  Γ  and  Γ  , Γ fsc stand 

for clamped, simply supported and free boundary conditions for which the 
displacement is specified, and the quantities (  ) stands for specified boundary 
values. The operator L may be either differential or integral operator and is also 
either linear or nonlinear in nature. If u0 is some approximation to you then 
equations (17) and (18) will not be satisfied exactly. Let us assume that errors 
involved are: 
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where E1-E7 are residual error functions. To determine the approximate solution 
of u0 some weighted integral of errors, defined in eqn. (19), is set to zero, so that: 
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where *
iw  (i=1-7) are a set of independent weighting functions and in this case, 

the operator L is defined as follow:  
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Now suppose that the approximate solution of the generalized displacements 
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where aj are undetermined coefficients, )i(
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of Trefftz functions. )i(
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the homogeneous equations in equations (5) and (6), i.e. for any function 
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Substituting equations (25) and (26) into equations (8)-(14) and transforming the 
polar co-ordinate system to the local co-ordinate system (n,s), the variables in 
eqn. (20) can be written as: 
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where a is undetermined coefficients, Ni (i=1-6) is the complete sets of Trefftz 
functions. In the Galerkin method, the Trefftz functions are also used as the 
weighting functions such that [17, 18]:  
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where functions Nij (i=1-6, j=1,2,3,..) can be obtained by introducing the T-
complete functions into equations (8)-(14). Substituting equations (27) and (28) 
into eqn. (20), we obtain the jth equation of the system of linear equations in the 
following discrete form: 
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The domain integral term in eqn. (29) can be transformed into a boundary 
integral by using Green’s second identity.  The matrix equation for the solution 
of the problem is 
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The resulting matrix K is full. The unknown generalized parameters a can be 
determined from eqn. (30) using Gaussian elimination method with row pivots. 
Substituting the determined coefficients a back into series (27), we can obtain 
any quantity that we need either inside the domain or on the boundary. 

5 Numerical examples 

Two simple examples are presented to illustrate the use of the indirect Trefftz 
method and the accuracy of the numerical results. The solutions have been 
obtained by using the Trefftz Galerkin Method (TGM).  The boundary variables 
include constant, linear and quadratic interpolations. For simplicity, ν=0.3 and 
D=1 have been used in the following examples. 

5.1 Example 1: clamped circular plate all round 

In the present example, a clamped circular plate is considered and frequency 
parameters are obtained. Owing to the presence of a smooth boundary, 
continuous elements have been adopted. Values of frequency parameter 

(
D

h
a22 

 ) found using indirect Trefftz method are tabulated in Table 1, 

where n and s refer to the number of radial and circumferential nodes, 
respectively. Inspection of table 1 shows that, the frequency parameters obtained 
using this method is in good agreement. Table 1 shows the convergence of the  
 
 

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

324  Mesh Reduction Methods



T
ab

le
 1

:  
F

re
qu

en
cy

 p
ar

am
et

er
 (

Dh
a2

2






) 

fo
r 

cl
am

pe
d 

ci
rc

ul
ar

 p
la

te
 (
=

0.
3)

. 

 
λ2  f

or
 v

al
ue

 o
f 

n 
 n

  
s 

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

0 
10

.2
20

8 
(1

0.
21

5)
 

21
.2

61
3 

(2
1.

26
) 

34
.8

80
8 

(3
4.

88
) 

51
.0

36
7 

(5
1.

04
) 

69
.6

72
4 

(6
9.

66
59

) 
90

.7
44

6 
(9

0.
73

90
) 

11
4.

23
33

 
(1

14
.2

12
6)

14
0.

06
72

 
(1

40
.0

56
1)

 
16

8.
24

68
 

(1
68

.2
44

5)
19

8.
78

18
 

(1
98

.7
56

1)
23

1.
58

75
 

(2
31

.5
73

2)
26

6.
70

15
 

(2
66

.6
79

0)
30

4.
08

38
 

(3
04

.0
60

1)

1 
39

.7
78

2 
(3

9.
77

1)
 

60
.8

40
0 

(6
0.

82
) 

84
.5

84
8 

(8
4.

58
) 

11
1.

02
83

 
(1

11
.0

1)
 

14
0.

11
45

 
(1

40
.1

07
9)

17
1.

81
96

 
(1

71
.8

02
9)

20
6.

09
47

 
(2

06
.0

70
6)

24
2.

89
22

 
(2

42
.8

78
2)

 
28

2.
20

64
 

(2
82

.1
97

7)
32

4.
03

60
 

(3
24

.0
03

6)
36

8.
29

44
 

(3
68

.2
73

4)
41

5.
01

83
 

46
4.

14
39

 

2 
89

.1
13

6 
(8

9.
10

4)
 

19
9.

06
38

 
(1

20
.0

8)
 

15
3.

83
44

 
(1

53
.8

1)
 

19
0.

32
96

 
(1

90
.3

0)
 

22
9.

52
25

 
(2

29
.5

18
6)

27
1.

45
85

 
(2

71
.4

28
3)

31
6.

02
17

 
(3

16
.0

01
5)

36
3.

24
54

 
(3

63
.2

09
7)

 
41

3.
06

49
 

46
5.

43
74

 
52

0.
38

73
 

57
7.

92
16

 
63

7.
91

60
 

3 
15

8.
20

61
 

(1
58

.1
83

) 
12

0.
09

96
 

(1
99

.0
6)

 
24

2.
73

64
 

(2
42

.7
1)

 
28

9.
20

40
 

(2
89

.1
7)

 
33

8.
41

28
 

(3
38

.4
11

3)
39

0.
41

80
 

(3
90

.3
89

6)
44

5.
12

56
 

50
2.

52
18

 
56

2.
59

09
 

62
5.

30
00

 
69

0.
63

84
 

75
8.

56
17

 
82

9.
09

44
 

4 
24

7.
02

41
 

(2
47

.0
05

) 
29

7.
76

95
 

(2
97

.7
7)

 
35

1.
33

75
 

(3
51

.3
8)

 
40

7.
75

72
 

(4
07

.7
2)

 
46

6.
94

88
 

52
8.

90
80

 
59

3.
65

32
 

66
1.

15
83

 
73

1.
32

38
 

80
4.

23
28

 
87

9.
77

49
 

95
7.

96
44

 
10

38
.8

37
3

5 
35

5.
58

64
 

(3
55

.5
68

) 
41

6.
24

16
 

(4
16

.2
0)

 
47

9.
69

76
 

(4
79

.6
5)

 
54

6.
01

66
 

(5
45

.9
7)

 
61

5.
13

92
 

68
7.

06
89

 
76

1.
81

52
 

83
9.

31
88

 
91

9.
54

49
 

10
02

.4
82

2
10

88
.2

08
1

11
76

.5
58

6
12

67
.6

44
8

6 
48

3.
91

20
 

(4
83

.8
72

) 
55

4.
41

41
 

(5
54

.3
7)

 
62

7.
75

30
 

(6
27

.7
5)

 
70

4.
00

01
 

(7
03

.9
5)

 
78

3.
04

82
 

86
4.

88
92

 
94

9.
56

42
 

10
37

.0
33

 
11

27
.2

80
6

12
20

.3
14

4
13

16
.0

93
2

14
14

.5
12

1
15

15
.7

00
6

7 
63

1.
91

90
 

(6
31

.9
14

) 
71

2.
30

27
 

(7
12

.3
0)

 
79

5.
57

84
 

(7
95

.5
2)

 
88

1.
67

42
 

(8
81

.6
7)

 
97

0.
63

40
 

10
62

.4
34

0
11

57
.0

20
2

12
54

.5
05

5 
13

54
.6

81
6

14
57

.7
12

4
15

63
.4

90
6

16
71

.9
92

1
17

83
.2

03
9

8 
79

9.
70

18
 

(7
99

.7
02

) 
89

0.
00

78
 

(8
89

.9
5)

 
98

3.
13

60
 

(9
83

.0
7)

 
10

79
.1

22
5 

(1
07

9.
0)

 
11

77
.9

99
6

12
79

.7
07

5
13

84
.2

12
0

14
91

.5
81

6 
16

01
.7

60
4

17
14

.7
05

2
18

30
.4

70
6

19
49

.0
45

9
20

70
.2

50
0

9 
98

7.
27

92
 

(9
87

.2
16

) 
10

87
.3

50
6 

(1
08

7.
4)

 
11

90
.3

88
0 

(1
19

0.
4)

 
12

96
.2

88
0 

(1
29

6.
2)

 
14

05
.0

50
2

15
16

.6
35

1
16

31
.1

09
7

17
48

.4
10

5 
18

68
.4

87
0

19
91

.3
90

6
21

17
.1

04
1

22
45

.6
22

5
23

76
.9

52
5

(…
) 

ar
e 

ta
ke

n 
fr

om
 [

19
].

  

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

Mesh Reduction Methods  325



T
ab

le
 2

:  
F

re
qu

en
cy

 p
ar

am
et

er
 (

Dh
a2

2






) 

fo
r 

si
m

pl
y 

su
pp

or
te

d 
ci

rc
ul

ar
 p

la
te

 (
=

0.
3)

. 

 
λ2  f

or
 v

al
ue

 o
f 

n 
 n

  
s 

0 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

0 
4.

93
72

 
(4

.9
77

) 
13

.9
05

4 
(1

3.
94

) 
25

.6
13

7 
(2

5.
65

) 
39

.9
67

6 
(3

9.
95

) 
56

.8
51

6 
(5

6.
84

) 
76

.2
12

9 
(7

6.
20

) 
98

.0
10

0 
(9

7.
99

) 
12

2.
19

09
 

(1
22

.1
7)

 
14

8.
74

24
 

(1
48

.7
2)

 
17

7.
63

55
 

(1
77

.6
1)

 
20

8.
83

14
 

(2
08

.8
1)

 
24

2.
33

14
 

27
8.

12
23

1 
29

.7
24

3 
(2

9.
76

) 
48

.4
83

3 
(4

8.
51

) 
70

.1
23

8 
(7

0.
14

) 
94

.5
56

1 
(9

4.
54

) 
12

1.
70

50
 

(1
21

.7
0)

 
15

1.
53

61
 

(1
51

.5
1)

 
18

3.
95

49
 

(1
83

.9
4)

 
21

8.
95

12
 

(2
18

.9
5)

 
25

6.
51

22
 

(2
56

.4
9)

 
29

6.
56

28
 

(2
96

.5
4)

 
33

9.
11

22
 

38
4.

08
16

 
43

1.
51

75

2 
74

.1
66

5 
(7

4.
20

) 
10

2.
77

90
 

(1
02

.8
0)

 
13

4.
30

49
 

(1
34

.3
3)

 
16

8.
68

81
 

(1
68

.6
7)

 
20

5.
86

51
 

(2
05

.8
5)

 
24

5.
79

96
 

(2
45

.7
7)

 
28

8.
42

22
 

(2
88

.4
1)

 
33

3.
75

63
 

(3
33

.7
2)

 
38

1.
69

43
 

(3
81

.6
6)

 
43

2.
22

41
 

48
5.

36
49

 
54

1.
07

41
 

59
9.

31
93

3 
13

8.
32

11
 

(1
38

.3
4)

 
17

6.
81

02
 

(1
76

.8
4)

 
21

8.
21

19
 

(2
18

.2
4)

 
26

2.
50

48
 

(2
62

.4
8)

 
30

9.
61

92
 

(3
09

.6
0)

 
35

9.
55

74
 

(3
59

.5
3)

 
41

2.
25

24
 

(4
12

.2
2)

 
46

7.
68

38
 

(4
67

.6
4)

 
52

5.
78

49
 

58
6.

60
84

 
65

0.
04

60
 

71
6.

15
11

 
78

4.
84

02

4 
22

2.
21

86
 

(2
22

.2
1)

 
27

0.
56

96
 

(2
70

.5
6)

 
32

1.
84

36
 

(3
21

.8
4)

 
37

6.
04

96
 

(3
76

.0
1)

 
43

3.
05

61
 

(4
33

.0
4)

 
49

2.
92

88
 

(4
92

.9
1)

 
55

5.
63

91
 

(5
55

.5
9)

 
62

1.
05

62
 

68
9.

27
25

 
76

0.
16

00
 

83
3.

82
33

 
91

0.
10

82
 

98
9.

03
96

5 
32

5.
87

47
 

(3
25

.8
4)

 
38

4.
08

16
 

(3
84

.0
6)

 
44

5.
25

22
 

(4
45

.2
1)

 
50

9.
26

94
 

(5
09

.2
6)

 
57

6.
24

00
 

64
6.

02
38

 
71

8.
61

52
 

79
4.

05
60

 
87

2.
25

71
 

95
3.

20
38

 
10

36
.9

04
4

11
23

.3
22

2
12

12
.4

32
4

6 
44

9.
22

80
 

(4
49

.2
2)

 
51

7.
33

50
 

(5
17

.3
) 

58
8.

35
35

 
66

2.
29

02
 

73
9.

13
29

 
81

8.
81

82
 

90
1.

32
04

 
98

6.
71

37
 

10
74

.9
21

7
11

65
.8

81
0

12
59

.5
40

1
13

56
.0

06
9

17
17

.5
22

2

7 
59

2.
33

82
 

67
0.

29
21

 
75

1.
19

84
 

83
5.

03
66

 
92

1.
72

96
 

10
11

.3
03

6
11

03
.7

67
7

11
99

.0
29

1 
12

97
.1

52
2

13
98

.0
86

8
15

01
.7

95
0

16
08

.3
30

8
14

55
.2

69
9

8 
75

5.
20

53
 

84
3.

03
12

 
93

3.
79

13
 

10
27

.4
58

9
11

24
.0

59
7

12
23

.5
30

4
13

25
.9

06
5

14
31

.1
08

9 
15

39
.1

49
8

16
49

.9
84

4
17

63
.6

64
0

18
80

.1
76

3
19

99
.4

31
2

9 
93

7.
82

93
 

10
35

.4
88

0 
11

36
.1

61
8

12
39

.6
73

6
13

46
.1

56
1

14
55

.4
98

8
15

67
.7

64
0

16
82

.8
86

5 
18

00
.8

14
0

19
21

.5
94

8
20

45
.2

10
1

21
71

.6
53

2
23

00
.8

33
0

(…
) 

ar
e 

ta
ke

n 
fr

om
 [

19
].

  

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 

326  Mesh Reduction Methods



natural frequencies with the number of out-of-plane shape functions. The values 
are compared with the ones published by Leissa [19]. For the fundamental 
frequency, this method gives acceptable results with a maximum discrepancy of 
0.03% clamped boundary conditions. 

5.2 Example 2: simply supported circular plate all round 

A simply supported circular plate with uniform thicknesses is taken as an 
example. The corresponding discretisation and the number of elements can be 
similarly adopted as example 1. Values of frequency parameter found using 
indirect Trefftz method are tabulated in table 2. For the fundamental frequency, 
this method gives acceptable results with a maximum discrepancy of 0.01% 
simply supported boundary conditions. It can be seen that, by comparison with 
the Leissa’s results [19], the present method is able to give satisfactory results. 

6 Conclusions 

The purpose of the present paper is free vibration analysis of thin circular plates 
by indirect Trefftz method. In thin plate vibration problems, we will deal with 
the governing equation with the homogeneous boundary conditions. The Trefftz 
methods can be classified into the indirect and direct formulations. Most of the 
researchers have been studying the indirect formulations. In this article, indirect 
formulation has been applied to thin plate vibration problems. The main 
conclusions of this paper can be summarized as follows: 

1. The indirect Trefftz formulation is very similar to the direct boundary 
element formulation. 

2. The computational accuracy of the indirect Trefftz method is strongly 
dependent on the condition numbers of the coefficient matrices. 

3. Although the examples are relatively simple, we may say that numerical 
solutions prove that the present method is not only effective but also 
provides accurate numerical results. 
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