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Abstract 

A Trefftz collocation method is proposed for the analysis of two-dimensional 
elastodynamic problems subjected to steady-state time-harmonic loads. Trefftz 
methods are characterized by the use of a superposition of a number of actual 
solutions of the homogeneous part of governing equations, the so-called 
T(Trefftz)-functions. This leads to high quality approximations where the 
unknowns are the weights of each of the T-functions considered. The unknowns 
are found by matching the approximations to the boundary conditions by 
following a standard collocation approach. 
     The numerical implementation of the method is briefly described and results 
are obtained for two anti-plane elastodynamic problems. The results compare 
quite favourably to other results available in the literature whereby Galerkin and 
collocation boundary element methods were used. 
Keywords: Trefftz method, elastodynamics, collocation. 

1 Introduction 

The Trefftz method (Trefftz [1]), consists essentially in building an 
approximation by resorting to a set of actual solutions of the homogeneous 
system of partial differential equations that governs the boundary value problem. 
As the homogeneous part of the equations is well taken care of, all that remains 
to be done is the (approximate) enforcement of the boundary conditions. The 
traditional way to achieve this is by collocation (Leitão [2, 3], Sensale and 
Rodriguez [4]). This means selecting a set of (boundary) points and forcing the 
approximation to satisfy, locally, the boundary conditions. 
     The use of the Trefftz concept is not restricted to boundary solution methods. 
Galerkin approaches typical of the conventional formulations of the finite 
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element methods may also be used to implement the Trefftz method (Freitas [5]) 
but this will not be addressed here. 
     The solutions for the homogeneous differential equations of a given problem 
are, in the Trefftz approach, obtained in the form of an infinite series of regular 
functions centered at a given point and well defined everywhere. Solutions for 
the homogeneous differential equations may also be obtained in the form of 
fundamental (singular) solutions. This is the approach followed by the Boundary 
Element Method (BEM) (see Brebbia et al. [6]) and by the Method of 
Fundamental Solutions (MFS) (see Fairweather and Karageorghis [7]). 
     In what follows the “Trefftz method” is characterized by the following: 
1) each function of the approximation basis is a non-singular term of an infinite 
series (although singular functions may be added to the basis when necessary); 
2) the collocation approach is used (even though the more general setting of 
weighted least squares may also be used).  
     The range and scope of applications of the Trefftz method, be it the 
collocation or the Galerkin-based approaches, has seen a strong increase in the 
last decade. Reviews on the subject may be found in Kita and Kamya [8], 
Jirousek and Zielinski [9] and Li et al. [10].    
     In this work the Trefftz collocation method is applied to the analysis of two-
dimensional elastodynamic problems subjected to steady-state time-harmonic 
loads. As will be later shown this problem may be simplified in a way that leads 
to the Helmholtz equation, which is the equation that models the scattering of 
acoustic waves. Trefftz methods are particularly suited for this type of problems 
because, contrary to the finite element method and, in a certain way, the 
boundary element method the discretization requirements are not dependent on 
the wavelength considered. Trefftz collocation methods have essentially been 
applied to the case of acoustics, that is, the scalar Helmholtz case (see Li [11]). 
Galerkin type Trefftz methods have been applied to the acoustic case (see 
Pluymers et al. [12], Cheung et al. [13]) but also to the elastodynamic case 
(Freitas and Cismasiu [14]) amongst others.  
     The numerical validation of the proposed method is achieved by the 
application to a set of anti-plane elastodynamic problems for which analytic 
(Kitahara [15]) as well as other numerical solutions are available (Dominguez 
[16] and Perez-Gavilan and Aliabadi [17].)   

2 The Navier equations 

The motion, with respect to time, of homogeneous, isotropic, linear elastic 
bodies is described by the Navier equations. These are obtained by appropriately 
replacing the compatibility (kinematic) description (and the strains are assumed 
to be infinitesimal for the sake of simplicity) into the constitutive relationship 
followed by the substitution into the equilibrium (static) equation. The resulting 
equation, written in terms of displacements, has to be satisfied everywhere in the 
domain together with the satisfaction of the boundary and initial conditions of 
the problem.  
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     A starting assumption that will be made here is that the main variables of the 
problem vary harmonically in time, that is, all variables depending on time are 
functions of sin tω  and cos tω  where ω  is the (angular) frequency. This 
assumption allows the problem to be stated in the frequency domain by means of 
a Fourier transform. 
     When dealing with problems that may exhibit some form of damping it is 
convenient to resort to the more general setting of viscoelasticity, that is, to the 
case when the material characteristics vary with time. In this case the following 
two independent complex-valued Lamé type coefficients may be obtained: 
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where ( )E ω∗  is the complex modulus and ν is the time independent (for the 
sake of simplicity) Poisson coefficient. 
     When damping effects are present these Lamé type coefficients take the form: 
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     By expressing the constants in this convenient form there are no differences 
between the governing equations for the elastic or the viscoleastic case when 
treating time-harmonic problems in the frequency domain. 
     In the expressions above µβ  and λβ  are damping factors. It is usual to 

consider µ λβ β β= = , and refer to β  as being the viscous damping factor.  

3 Formulation of the elastodynamic equation 

The general form of the elastodynamic governing equation for viscoelastic 
materials in the time domain is (Christensen [18]): 
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where ( , )b X t  is the body force load vector, and 
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are, respectively, the square of the S-wave velocity and the square of the P-wave 
velocity in the viscoelastic case, ν  is the Poisson coefficient, ρ  is the density 

of the material and ( , )ER t τ  is its relaxation function. 
     For the sake of simplicity let us assume that the boundary conditions 
(displacements ( , )u X t  and tractions ( , )p X t ) vary harmonically in time as 
follows: 
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and that the body forces are not present. 
     In these conditions, that is, for time-harmonic problems, a description of the 
governing equation in the frequency domain is achieved by applying the Fourier 
transform to the general equation in time. The result may be written as: 
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where the bar over the displacement and traction denotes the transformed 
variables and: 
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     The boundary conditions now read: 
( , ) ( ) ( ),

( , ) ( ) ( ),
o o u

o o p

u X u X X

p X p X X

ω δ ω ω

ω δ ω ω

= − ∀ ∈∂Ω

= − ∀ ∈∂Ω
   (8) 

     The above description is a three-dimensional one. The displacement field has, 
therefore, three components:  

1 1 2 2 3 3( , )u X t u e u e u e= + +       (9) 
     In this work the three-dimensional field will be restricted to the anti-plane 
case only.  
     The geometry of the anti-plane case is a two-dimensional one and 
displacements only occur in the 3x  direction, that is: 

1 2

3 3 1 2
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     The only non-null components of the stress tensor are 13 23and σ σ .  

     Due to these simplifications 3u  is governed by a simplified version of the 
elastodynamic equation, the scalar wave equation: 
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2 2
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where only the S-wave velocity is considered.  

4 Helmholtz decomposition 

Helmholtz theorem (see Pak and Eskandari-Ghadi [19]) states that any twice 
differentiable vector field  u  may be, uniquely, decomposed into a sum of two 
field vectors, an irrotational one Pu  not present in the anti-plane case) and a 

solenoidal one Su .

 
     The application of the Helmholtz decomposition to the Navier equation in the 
frequency domain as shown above leads to: 
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     Looking only at the solenoidal field and considering a vector potential ψ    

1 1 2 2 3 3e e eψ ψ ψ ψ= + +           (13) 
the following form is obtained: 
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where, for the anti-plane case, only the 3 3eψ  matters. 

5 The Trefftz collocation approach  

The starting point in any Trefftz approach is the approximation of the variable of 
interest, in this case the displacement field, by a superposition of an infinite 
number of functions each of them solution of the homogeneous governing 
equation, that is: 

1
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where the 3
ia ∈  represent the unknowns, that is, the weights affecting each of 

the iu∗  functions. The full series of functions is usually referred to as the T-
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complete series in the sense that any solution of the actual problem under 
consideration is included in the space spanned by the T-complete series. 
     Applying the collocation approach, at selected iX  points located at the 

boundary ∂Ω , the following system arises: 
( ) ( )
( ) ( )

d i i i u

d i i i p
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= ∀ ∈∂Ω
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where the left-hand side contains the Trefftz approximation and the right-hand 
side represents the (known) boundary conditions. 

6 Trefftz functions for the anti-plane case  

The governing equation is of the scalar Helmholtz type. The displacement 
component of interest in the anti-plane case is described by the following T-
complete series (Qin [20]): 
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- for an unbounded region: 
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     The surface stress vector at point X of the boundary of normal 

1 1 2 2( )n X n e n e= +  is: 

3 3
3 1 2

1 2

( ) ( )( )( ) ( )
2(1 )d

u X u XEp X p X n n
x x

ω
ν

∗  ∂ ∂
= = + + ∂ ∂ 

  (19) 

7 Calculation of the natural frequencies  

The above representations can be immediately applied to obtain the 
displacements and stresses but one aspect of interest in this type of 
elastodynamic problems is the calculation of the natural or resonance 
frequencies. 
     The procedure used in this work to determine the natural frequencies starts by 
evaluating a measure (a norm) of the solution of the problem at a given set of 
domain points for a range of frequencies. 
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     A search method, in this case the Nelder-Mead Simplex Method, is then 
applied to fine tune the capture of the natural frequencies as those for which the 
norm of the solution takes the highest value. 

8 Numerical results  

The set of examples tested were previously analysed in the works of Domínguez 
[16], Kitahara [15] and Perez-Gavilan [17]. 
     In all cases the natural frequencies points are calculated and compared to 
analytic results and to the numerical results shown in the above references. 

8.1 Square region under uniform anti-plane shear 

A 6m x 6m square region, clamped on one side, free on all others, is subjected to 
a uniform anti-plane shear load 2100 N/mp =  on the opposite side. 

     The material properties are: shear modulus 6 210 N/mµ = ; specific mass 
3100Kg/mρ = ; damping coefficient 0.05β = .  

 

 

Figure 1: Square region under uniform shear. 

     An analytical solution of this square domain (in fact, a one dimensional) 
problem exists for the case of perfectly elastic material, that is, for the case of a 
material with null damping. The resonance frequencies are 

(2 1) / (2 )n Sn c aω π= −  for a a a×  square region.  In this case, for which 

the shear-wave velocity is 100 m/sSc = , and 6a =  the first frequencies are 

26.18 1s− , 78.54 1s− , 130.90 1s− , ...  

6m
 

6m
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     The differences when a 5% material damping is considered are negligible.  
These values, shown in figure 2 for the square region under uniform shear, are 
exactly reproduced by the present method. 
 

 

Figure 2: Norm of the solution for a range of frequencies.  

8.2 Infinite cylinder under uniform axial load/displacement on the surface 

This is an anti-plane problem now with a circular cross-section of radius 6m. The 
material properties are the same as for the previous examples. 
     The boundary conditions are: 

• unit uniform axial displacement; 
• uniform axial load on the surface 2100 N/mp = . 
 

 

Figure 3: Cross-section of infinite cylinder under uniform load. 

     The first two resonance frequencies for the case of unit uniform axial 
displacement, 40.08, 92.00ω = , match the analytical ones. 
     And the same for the case of uniform axial load, the first two resonance 
frequencies, 63.87,116.93ω = , match the analytical ones. 

6
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Figure 4: First two resonance frequencies for the case of unit uniform axial 
displacement. 

 

Figure 5: First two resonance frequencies for the case of unit uniform axial 
load. 

9 Conclusions  

In this work a Trefftz collocation method has been presented and applied to the 
analysis of elastodynamic problems in the frequency domain.  
     The method relies on the use of actual solutions of the homogeneous 
governing equation which are seen to be scalar and vector potentials satisfying 
the Helmholtz equation. A solution is found by superposing an appropriate 
number of terms of the infinite series representing the solution of the 
homogeneous governing equation followed by the enforcement of the boundary 
conditions using the collocation approach.  
     The results obtained in this manner for a set of representative problems 
compare very well with analytical and numerical results available in the 
literature thus showing the potential of this technique. 
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