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Abstract 

In this work, we present a reciprocal theorem of linear elastodynamics derived in 
terms of velocities instead of displacements, which seems to be better suited in 
relating two different elastodynamic states of an elastic region for several 
reasons that will be discussed latter on. As with the conventional displacement 
integral equation representation, using this alternative reciprocal theorem we can 
produce a velocity integral equation representation and then formulate a novel 
numerical approximation based on the boundary element method (BEM). 
Furthermore, a thorough stability performance analysis of the formulations arise 
utilizing displacement and/or velocity reciprocal theorems is presented. 
Keywords: boundary elements, convolution integrals, transient elastodynamics, 
reciprocal theorems, velocities. 

1 Introduction 

In linear elastodynamics and their numerical approximations based on the 
boundary integral equation method (BIEM), a common starting point is Graffi’s 
reciprocal theorem relating the displacement and traction fields in a given solid 
body [1]. Furthermore, either a variational or a weighted residual statement that 
leads to the above reciprocal theorem can also serve as the starting point [2]. 
     In general, reciprocal theorems in elasticity provide a relation between 
displacements, tractions and body forces for two different loading states 
pertaining to the same solid. Assuming that the one loading state is the one 
sought, and another is that corresponding to a unit impulse applied at zero time 
and at fixed source point ξ in the infinite region and in the direction of the 
coordinate axes, it is possible to obtain what is called an integral representation 
for displacements in elastodynamics. A drawback, however, of the reciprocal 
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relation is that it does not include the purely elastostatics case; also, the 
numerical formulations derived from its use are known to present stability 
problems unless special precautions are taken. 
     The advantage of this velocity-based reciprocal theorem, as well as of the 
numerical approximation that derives from it is as follows: 

• It includes the case of elastostatics from which the well-known Betti’s 
reciprocal theorem may be derived. 

• Problems for which the prescribed boundary data of Dirichlet-type and 
given as velocities at discrete time intervals may be countered without 
the need of time integration to recover the corresponding displacement 
input data. 

• More stable numerical methods than those produced by the 
conventional displacement formulation.  

     It is important here to mention that velocity integral representation formula 
has also been presented and utilized elsewhere [3, 4] but not as an outgrowth of 
the respective reciprocal theorem and also used for other purposes, i.e. 
discontinuous traction field, than for these presented here that are theoretical 
consistency of reciprocal statement in elastodynamics and numerical stability of 
BIEM formulations derived. 

2 Reciprocal theorems in terms of displacements 

The reciprocal theorem first specifies a regular region V  in the sense of Kellog 
with boundary S  and material properties 1 2ρ,c ,c  as the mass density, the 
pressure and shear velocity of propagation respectively. Considering two distinct 
elastodynamic states [ ], ,= i i iA u t b  and [ ], ,i i iB u t b′ ′ ′=  defined in that region and 
with initial conditions, 

0 0( ,0) ( ), ( ,0) ( )i i i iu x u x v x v x= =                                     (1a) 
0 0( ,0) ( ), ( ,0) ( )i i i iu x u x v x v x′ ′ ′ ′= =                                   (1b) 

where , ,i i iu t b  are the displacement field, the tractions and body forces 
respectively, while iv  is the velocity field defined as the first time derivative of 
displacements. Then for time 0t ≥  

( )

( )

0 0

0 0

i i i i i i i i
S V

i i i i i i i i
S V

t u dS b u v u u v dV

t u dS b u v u u v dV

ρ

ρ

′ ′ ′ ′∗ + ∗ + + =

′ ′ ′ ′∗ + ∗ + +

∫ ∫

∫ ∫
                (2) 

holds true, where operation ∗  denotes Riemann’s convolution, i.e., 

0
( , ) ( , )

t
f g f x t g x dτ τ τ∗ = −∫                                            (3) 

for 0t ≥  and for two arbitrary functions f  and g . As it is well known the basic 
approach for considering static conditions in an elastic body is to take zero 
values for time derivatives of the displacements. Under this consideration eqn (2) 
would led to the following form: 
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i i i i i i i i
S V S V

t u dS b u dV t u dS b u dVρ ρ′ ′ ′ ′∗ + ∗ = ∗ + ∗∫ ∫ ∫ ∫                     (4) 

which goes on being  convoluted type relation between displacement, traction 
fields and body forces and it can not lead to the classical Betti’s reciprocal 
theorem for linear elastodynamics. 

3 Reciprocal theorems in terms of velocities 

There are several ways to proceed with higher order time derivatives reciprocal 
theorems, e.g. variational approaches, here we adopt the simplest one which is 
the direct differentiation in time of eqn (2). To proceed further we utilize the 
Leibniz’s general rule for differentiation under the integral sign, or the time-
differentiation property of convolutions, which states that: 

( ) 0 0d f g df dgg f g f f g
dt dt dt

∗
= ∗ + = ∗ +                              (5) 

where 0f  and 0g  stand for f  and g  at time 0t = . We focus here at the first 
time derivative of eqn (2) which will provide us with the reciprocal theorem of 
elastodynamics in terms of velocities, 

( )

( )

0 0 0 0

0 0 0 0

i i i i i i i i i i i i
S V

i i i i i i i i i i i i
S V

t v t u dS b v b u v v u a dV

t v t u dS b v b u v v u a dV

ρ

ρ

′ ′ ′ ′ ′ ′∗ + + ∗ + + + =

′ ′ ′ ′ ′ ′∗ + + ∗ + + +

∫ ∫

∫ ∫
         (6) 

where ia  denotes the second time derivative of iu  component, namely the 
acceleration’s thi  component. Also notice here that in order to achieve eqn (6) 
the property of convolution given by eqn (5) has been utilized. Reciprocal 
statement given by eqn (6) is one of convolution type relating velocities and 
tractions on the boundaries of two distinct elastodynamic states as well as 
displacements, velocities, accelerations and body forces inside the domainV . 
For the above reciprocal relation if someone assumes static conditions, i.e. zero 
time derivatives for displacements, would lead directly to: 

0 0 0 0
i i i i i i i i

S V S V

t u dS b u dV t u dS b u dVρ ρ′ ′ ′ ′+ = +∫ ∫ ∫ ∫                        (7) 

which is the well-known Betti’s reciprocal theorem for linear elastostatics. It is 
also interesting to notice that like eqn (2), which may be seen as a “convoluted” 
form of the principle of virtual work produced by the displacements of one state 
with the tractions of the other state, eqn (6) represent a “convoluted” form of the 
principle of virtual power produced by velocities of one state with the tractions 
of the other. 

4 Axial waves in the 1D rod 

In order to investigate at least the temporal properties of algorithms derived by 
displacement and velocity reciprocal theorems and in an effort to avoiding the 
spatial discretization and integration we deal here with the simplest case 
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consisting of the case of axial waves in one-dimensional finite rods 
(homogeneous or piecewise homogeneous).  
     The governing equations of the problem under consideration are the 
equilibrium equation plus the boundary conditions at the two end of a rod with 
elasticity modulus E , mass density ρ and section A : 

2 2

2 2 0u uEA A
x t

ρ∂ ∂
− =

∂ ∂
                                              (8) 

( , ) ( , )

( , ) ( , )
u

t

u x t u x t on

f x t f x t on

= Γ

= Γ
                                          (9) 

     The fundamental solution as well as its derivatives (temporal or spatial) for 
this simple problem can be achieved with standard procedures like those 
described in [5] and are given below. 

2
xcu H t

EA c
ξ∗  − 

= − − 
 

                                      (10) 

1
2

x xu t
x EA x c

ξ ξ
δ

ξ

∗ −  − ∂
= − + 

∂ −  
                              (11) 

2
xu c t

t EA c
ξ

δ
∗  − ∂

= − − 
∂  

                                      (12) 

     In the above solutions Ec ρ=  is the velocity of wave propagation, δ  is 

the Dirac’s delta and H  is the Heaviside function. Although the simplicity of 
eqn (8) it is very suitable in order to investigate the numerical behaviour of 
algorithms arise applying boundary integral methodology utilizing reciprocal 
theorems and also has a practical rate. A boundary integral formulation in order 
to numerically solve eqn (30) is also presented in [6] for the exploration of 1D 
wave propagation analysis in layered media. 

4.1 Time discretization and BIEM formulation 

Following standard procedures of the BIEM formulations that due to space 
limitations are ignored, we may derive the displacement and velocity integral 
representation based on reciprocal theorems in terms of displacements and 
velocities respectively, for a rod of length L : 

0 0

0 0

( , ) ( , ) ( , ) ( , ) ( , )

(0, ) ( , ) (0, ) ( , )

t t

t t

u t EAu L u L t d EAu L u L t d

EAu u t d EAu u t d

ξ τ ξ τ τ τ ξ τ τ

τ ξ τ τ τ ξ τ τ

∗ ∗

∗ ∗

′ ′= − − − − −

′ ′− − − + − −

∫ ∫

∫ ∫
   (13) 

0 0

0 0

( , ) ( , ) ( , ) ( , ) ( , )

(0, ) ( , ) (0, ) ( , )

t t

t t

v t EAv L u L t d EAu L v L t d

EAv u t d EAu v t d

ξ τ ξ τ τ τ ξ τ τ

τ ξ τ τ τ ξ τ τ

∗ ∗

∗ ∗

′ ′= − − − − −

′ ′− − − + − −

∫ ∫

∫ ∫
    (14) 
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     The ( )′  symbol represents a spatial derivative, and , ,u u v∗ ∗ ∗′  are the 
fundamental solutions of the displacement as well as its spatial and time 
derivatives as given by eqs (10) and (12), respectively. In order to further 
proceed with the numerical implementation of integral equations (13) or (14) we 
divide the time interval (0, t) into N  equal time steps of length h  and assume, 
for the displacement, velocity and the spatial derivative of displacements, an 
approximation in terms of linear basis functions. The temporal approximation of 
any of these fields it is given as, 

( ) ( )( ) 1
1 1

1
( )

N
n n

n n n n
n

t t t t
q t H t t H t t q q

h h
−

− −
=

− − = − − − + 
 

∑             (15) 

where H  is the Heaviside function and nt n h= . Collocating point ξ  over the 
boundary of the domain, that is points 0ξ =  and Lξ = , each one of the integral 
equations (13) and (14) provides us with two equations. Note also that in these 
integral equations we have also assumed initial conditions to be zero so that 
respective terms to be vanished; however it is not difficult to also include these 
terms. Introducing temporal approximation of the type presented in eqn (15) in 
integrals of eqn (13) and (14), and also accomplishing analytical temporal 
integrations we derive equations needed in order to have a BIEM time marching 
formulation of the problem. Note also here that in the case of a homogeneous 1D 
rod of constant cross section, internal force as well as the normal stress is given 
as below. 

,

,

( ) ( ) ( )
( ) ( ) ( )

x x x

x x

t E t Eu t
N t A t EAu t
σ ε

σ

= =

= =
                                         (16) 

     From eqn (16) it is clear that for this case is near the same, from a numerical 
point of view, when referring to force, stress, traction or the spatial displacement 
derivative since all these variables are derived from the displacement’s spatial 
derivative. 

4.2 Stability analysis 

The unstable behaviour of boundary integral equation method is well 
documented and has been remarked since the early appearance of time domain 
boundary integral equations formulations [7]. In [8] a procedure in order to 
investigate the stability characteristics of such equations is given, based on the z-
Transformation and some answers are provided for the “intermittent instability” 
phenomenon. Here we will investigate the stability of such equations utilizing a 
method similar to the one referred as the matrix method [9] frequently utilized in 
order to exploit stability properties of finite differences schemes in time. 
According to the matrix method, if nq  is the vector of the unknown boundary 
variables at discrete time nt nh=  then it may be written as, 

0n nq c q=                                                         (17)  
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where nc  is the amplification matrix of step n . Assuming an error in the initial 
data 0q  we may establish the error vector 0q . The evolution of that error in time 
is given similar to eqn (17) as follows. 

0n nq c q=                                                       (18) 
     In the regime of BIEM time marching formulation this nc  amplification 
matrix depends on time step n  and it is difficult to establish an explicit form of 
it. Instead of exploit the evolution of the error utilizing properties of the 
amplification matrix, e.g. spectral radius, we proceed further in a numerical 
manner. That is we introduce an error in initial data and we explore this error’s 
evolution in time computed by BIEM procedures resulted utilizing displacement 
and velocity reciprocal theorems. Beneficial factor of this procedure is that the 
only parameter manifests the stability performance for the case of 1D wave 
propagation in a rod is the non-dimensional ratio sometimes encountered as the 
Courant-Friedrichs-Lewy (CFL) parameter and given as 

c h
L

β =                                                        (19) 

     Consequently results produced are problem independent. In Table 1, stability 
regions are given explicitly, for various combinations of boundary conditions, in 
terms of parameter β . 

Table 1:  Stability properties for varying β  parameter. 

prescribed 
variable on i  

(start) boundary 

prescribed 
variable on j  

(end) boundary 

stability on 
region 0 1β≤ <  

stability on 
region 1 2β< ≤  

u  u  unstable for any 
1
z

β ≠  

unstable for any 
β  

u  u′  stable for small 
regions of β  

stable for any β  

u′  or v  u′  or v  stable for any 
1
z

β ≠  

stable for any β  

 
     Variable z  appeared in table (1) stands for the positive integer numbers. As it 
may observed in table (1), in formulations where only velocities and/or tractions 
used, that means that the velocity reciprocal theorem has been utilised, the 
behaviour is in general stable except for the cases where the parameter β has 
been chosen such to be equal to a ratio of unity with an integer number. 
Regarding formulations based on the displacement reciprocal theorem it seems, 
as it can also be seen in table (1), that are most prone to numerical instabilities. 
For the case of Dirichlet problems formed in terms of displacements there is 
appeared a “stable” behaviour for discrete values of β , however stability can 
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not be guaranteed since it is almost difficult to define these values due to 
computer’s numerical precision. Regarding the stability regions presented in the 
case of mixed problem when utilizing displacement formulation these are shown 
to have a finite range near to 1/ ( 0.5)zβ = +  and  also near but not equal to the 
value of 1/ z . For increasing z , and furthermore for decreasing β  and time step 
value h  these finite stability region are decrease and tend to degenerate to 
discrete values. 

5 Numerical examples 

In this section there are presented some numerical examples in order to verify the 
results obtained on the stability performance of algorithms utilizing the 
displacement as well as velocity reciprocal theorems. In the case of a single 1D 
rod we present a set of examples in order to cover the Dirichlet, as also the 
mixed type of problems. Both examples consider a rod of elasticity 
modulus 21000kNE m= , mass density 31.0 t

mρ = , a cross section of area 
216A m= and a length 4L m= . 

5.1.1 A Dirichlet problem 
As a first example a Dirichlet type of problem is solved utilizing both the 
displacement as well as the velocity formulations. The rod is constrained on the 
i  and j  boundary points to prescribed motion given as 

( ) cos(24 ) 1
( ) 1.5 ( )

i

j i

u t t
u t u t

= −
=

 

with the respective velocities give as 
( ) 24sin(24 )
( ) 1.5 ( )

i

j i

v t t
v t v t

= −
=

 

     As a frequency of the prescribed motion have been chosen one near the first 
natural frequency of the constrained rod which is /q q c Lω π=  with q  equal to 
unit. In fig (1) numerical solution of the spatial derivative of displacement is 
plotted utilizing velocities formulation for parameter 1/ 30β =  which is the 
unstable solution and also for 1/ 30.1β =  which is the stable one. 

5.1.2 A mixed problem for  wave propagation 
A benchmark problem which is very frequently utilized in order to test the 
performance of boundary integral equation methods in time is presented here. It 
consists of a rod with its i  boundary point constrained to have a zero motion in 
time while its j  boundary point excited by a constant force in time. First we 
consider the solutions computed utilizing the velocity formulation which, as 
could be seen in fig (2), are stable and really accurate for values of parameter β  
equal to 1/101.50 as well as 1/101.25 but not for that of β  = 1/101. Contrary to 
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the velocity formulation, the respective one utilizing the displacement reciprocity 
gives stable results only for the case where β  equals to 1/(z+0.5), or to values 
very close to that according also the notes given in sec (4.2). This can be 
ascertained by results in time, plotted in fig (2) where the unstable performance 
for β  equal to 1/101.25 and 1/101.00 are shown together with those of β  equal 
to 1/101.5. 
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Figure 1: Displacement’s spatial derivative of boundary point i  in time 
utilizing velocity formulation. 
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Figure 2: Plots of computed displacement utilizing velocity formulation. 

     As further verification for these almost discrete stability conditions in 
reference to β  parameter for the case of displacement formulation in fig (3) 
there is a series of solutions for various z  integer values. In this plot, someone 
may also notice the numerical damping introduced for increasing β .  As also 
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someone may observe in fig.(3), contrary to other 1D formulations reported 
elsewhere, e.g. [6], there are not presented difficulties to accurately describe 
discontinuous variations in time, e.g. that of tractions. Also inaccurate results as 
reported in [3] have as origin the discontinuity of tractions that generates an 
error, but their raising in time is due to unstable behaviour of the formulations. 
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Figure 3: Displacement’s spatial derivative results utilizing displacement 
formulation for various “stable” values of β . 

6 Conclusions 

In this work the classical Graffi’s reciprocal theorem in term of displacements is 
re-examined as a counterpart of that of Betti’s in the case of elastostatics. It is 
shown that, despite the doubtless validity of Graffi’s theorem, nevertheless a 
similar reciprocal statement involving velocity field which also is valid in the 
case of elastodynamics, is also includes the elastostatic case as a limit case. After 
introducing this theorem, it is shown that it is straightforward to establish the 
integral representation of velocities. Furthermore utilizing this reciprocal 
theorem in terms of velocities, boundary integral equation methods type of 
formulations are established and tested on simple model problems. Also results 
obtained are compared to those computed utilizing conventional BIEM 
formulations based on the classical reciprocal theorem in terms of displacements. 
It is found that formulations based on velocities present a superiority regarding 
stability performance and considered more compatible for the case of transient 
elastodynamics. Also extension of the fully three-dimensional elastodynamics 
case with boundary elements is an ongoing research, undertaken by the authors. 
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