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Abstract 

In this work, a BEM formulation is proposed to analyse cohesive crack using the 
dual reciprocity method. The solution of the non-linear system of equations is 
based on the Newton–Raphson process for which the consistent tangent operator 
is derived. The cohesive crack model is the criterion adopted to describe crack 
growth particularly for quasi-brittle material problems. The solution is very 
stable and accurate and can be easily applied to solids that exhibit many crack or 
micro-cracks. Examples are shown to illustrate the applicability of the 
formulation.  
Keywords: boundary elements, crack growth, cohesive crack model. 

1 Introduction 

The boundary element method (BEM) has already been recognized as an 
accurate and efficient numerical technique to deal appropriately with many 
problems in engineering. In particular, the method is recommended to analyse 
crack problems. For this kind of problems the dimensionality reduction of BEM 
is clear, as only boundary discretization is required. Internal points are needed 
only to approximate the crack line, but without requiring remeshing. Among the 
crack models the Hillerborg cohesive model is an idealization that represents 
well the dissipation process occurring in a small region ahead the crack tip [1]. 
The dissipation zone is approximated by a crack line since the process begins. 
This model is particularly recommended for the analysis of quasi-brittle 
materials.  
     The Dual Boundary Element Method (DBEM), proposed by Portela et al. [2], 
is nowadays the most used technique to model linear and non-linear fracture 
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processes. The method is based on the use of singular and hyper-singular integral 
equations written for collocations along the crack line. This scheme allows 
writing four independent relations for each node defined on the crack line and 
avoids the division of the solid into sub-regions. Besides these works we want to 
cite some alternative procedures proposed by the senior author: Venturini [3] has 
used dipoles to enforce crack discontinuities governed by a cohesive model; 
Manzoli and Venturini [4] have modelled cracks by using strong discontinuities 
similar to the technique used for the enhanced finite element methods, and Leite 
and Venturini [5] adopting narrow sub-regions with rigidity going to zero for the 
simulation of cracks.  
     The solution techniques for the majority of the proposed works to analyse 
crack problems using BEM are based on iterative schemes that corrects the 
forces between the crack faces that satisfy the criterion adopted (see for instance 
Saleh and Aliabadi [6]). These processes are simple and the relevant matrices are 
also kept constant during the process. This kind of technique requires a large 
number of iterations to achieve the equilibrium for a single load increment. 
Moreover, for the cases of more complex pattern of cracks, for instance with a 
solid containing many micro-crack, this process can be either inaccurate or 
instable.  
     In this work, we are analysing quasi-brittle two-dimensional domains using 
the cohesive crack model. Two solution techniques are proposed: the classical 
procedure based on the corrections of the crack surface forces and a more 
elaborated scheme for which the consistent tangent operator has been derived. 
for the second procedure the system of equations is solved by using the Newton–
Raphson method. Numerical examples are shown to compare the accuracy and 
efficiency of the two procedures. 

2 Cohesive crack model  

The cohesive crack models, in which the dissipation zone was reduced either to a 
line for 2D problems or to a surface for 3D problems, appropriate to quasi-brittle 
materials are due to Hillerborg et al. [1]. In this work a softening region just 
behind the crack tip is defined along which a relation between the crack surface 
tensile forces, or cohesive forces tf , and the crack opening displacement u  is 

defined to govern the dissipative process. The cohesive forces disappear after a 
crack opening critical value, cu . The crack starts opening when the cohesive 

forces reaches a tensile critical value c

tf . For values of the tensile stresses less 

than c

tf  the crack does not open. For values of the crack opening displacement 

larger than cu  the cohesive force is zero. 

     Several relations between cohesive forces and crack opening displacement 
have already been tested. Three of them are often employed to carry out crack 
analysis for quasi-brittle materials: linear model; bi-linear model; and 
exponential model (a) linear model; b) bi-linear model; and c) exponential model 
(Figure 1). 
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Figure 1: 
exponential model. 

     For the linear case the cohesive model is given by the following relations: 

cE if                                 (1a) 

   1 / 0c
t t c cf u f u u if u u                         (1b) 

     0t crf u if u u                            (1c) 

3 Dual Boundary Element Method 

For an elastic domain , with boundary , one can easily derive the integral 
representation of displacements as follows:  

* *( ) ( ) ( , ) ( ) ( ) ( , )il l il l l ilc f u f P f c u c d P c u f c d
 

     (2) 

where *

iju  and *

ijp  are the Kelvin’s fundamental solutions  for displacement and 

tractions,  ju  and jp  are boundary displacements and tractions and ilc  the well 

known free term for elastic problems; it is equal to il  for internal points, zero 

for outside points and il /2 for smooth boundary nodes and also nodes defined 

along the crack surfaces.  
     To obtain this integral representation one has to differentiate equation (6) to 
obtain the strain integral equation, apply the Hooke’s law to achieve the stress 
integral representation and then multiply this equation by the director cosines of 
the crack surfaces to obtain the traction representation for smooth collocations as 
follows: 

1
( ) ( , ) ( ) ( , ) ( )

2 j k kij k k kij kp f S f c u c d D f c p c d 
 

         (3) 

where the kernels kijS and kijD  are derived from the traction and displacement 

fundamental values following the steps above described.  
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     Equations (2) and (3) are, as usual, transformed to algebraic relations by 
dividing the boundary and the crack surfaces into elements along which 
displacements and tractions are approximated. Besides that one has to select a 
convenient number of collocation points to obtain the algebraic representations. 
In this work we are using boundary collocation points either at the element ends, 
therefore coincident with nodes, or along the element when displacement and 
traction discontinuities are recommended. Using the discretized form of equation 
(2) applied only to boundary collocation points one can obtain the usual system 
of algebraic equations, relating boundary values, as follows: 

b f b f
b b b f b b bH U H U G P G f                     (4) 

where bU , fU , are displacements assigned to boundary (b) and to crack surface 

nodes (f), bP  gives the boundary tractions, while f represents the tractions 

applied along the crack surfaces; b
bH , f

bH , b
bG  and f

bG  are the corresponding 

matrices to take into account displacement and traction effects, the subscript b 
indicates that the collocation is on the boundary and the superscripts specify the 
boundary (b) or crack surface (f) values. 
     For the crack surfaces we need two opposite collocations for each 
discretization node to obtain four algebraic independent relations, corresponding 
to four unknown crack surface values, two displacements and two tractions. As 
we are dealing with hyper-singular equations (3), it is convenient to use 
collocation points defined along the element and not coincident with the 
discretization node. The node values of crack displacements and tractions are 
however kept at the element end. Thus, from the discretized forms of equations 
(2) and (3), one can write the following set of algebraic equations: 

b f b f
f b f f f b fH U H U G P G f                     (5) 

where the subscript f in the matrices x
fH  and x

fG  indicates equation written for 

collocation along the crack line. 
     Using equations (4) and (5) together with the cohesive crack model described 
in the previous section one can develop an appropriate algorithm to analyze 
crack problems as will be shown in the next section. 

4 Solution technique 

In the context of BEM a non-linear crack problem can be solved by simple 
schemes, in which the relevant matrices are kept constant and the corrections are 
applied to the crack surface forces according to the chosen criterion [6]. This 
technique is simple, but usually requires a large number of iterations to find the 
equilibrium within a load increment. 
     Non-linear implicit BEM formulations, employing tangent operators, have 
shown to give more accurate and stable results [7, 8]. In what follows, this 
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scheme is employed as an alternative technique to solve crack problems. 
     To derive the crack BEM approach using tangent operator let us modify the 
equilibrium equations (4) and (5) as follows 

b r b r
b b b r b b b b r bH U H U H U G P G P G P     

          (6) 

b r b r r
f b f r f f b f f fH U H U H U G P G P G P     

          (7) 

where the subscripts r and   are related to the right and left crack surfaces. 
     Crack surface displacements and tractions in Equations (6) and (7) have to be 
modified to be given in local coordinates (n, s), in which n and s are coordinate 
axes perpendicular and parallel to the crack line, respectively. Then, one can 

define the crack opening displacements su  and nu  as follows 

s s rsU u U    n n rnU u U             (8a,b) 

     After these modifications equations (6) and (7) read 

   b rs s rn n s
b b b b rs b b rn b s

n b rs rn s n
b n b b b rs b rn b s b n

H U H H U H H U H u

H u G P G f G f G f G f

     

    

  

  
 

           (9) 

   b rs s rn n s
f b f f rs f f rn f s

n b rs rn s n
f n f b f rs f rn f s b n

H U H H U H H U H u

H u G P G f G f G f G f

     

    

  

  
 

         (10) 

     Equations (9) and (10) have to be written and solved within the context of 
incremental problems. Thus, for a given increment of load one has to replace the 
boundary and crack values by the corresponding increments. Then, after 
applying the boundary conditions, as usual we have to store all unknown 
boundary increments into the vector X  and cumulate the known boundary 

value effects into the independent vectors bF  and fF . Thus, equations (9) 

and (10) become 

( ) 0n rn n
b b b n b b b rnY A X H u F G G f                     (11) 

( ) 0n rn n
f f f n f f f rnY A X H u F G G f                     (12) 

where bA  and fA  contain the coefficients of matrices referred to unknown 

boundary and crack surface displacement increments ( bU , rsU and rnU ), 

unknown boundary traction increments ( bP ), and the fictitious crack opening 

increments in the direction s ( su ). The traction increments in the direction s 

are neglected according to the adopted cohesive crack model. Moreover, the left 
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surface crack tractions nf   are replaced by minus right surface crack tractions, 

rnf .  

     To find the solution of equations (11) and (12) one has to linearize these 
equations using only the first term of the Taylor’s expansion, as follows 

     , ... , ...
0

i i i i
b k n b k ni i i

b nk k nki i
k nk

Y X u Y X u
Y u X u

X u
 

     
     

 
    (13) 

     , ... , ...
0

i i i i
f k n f k ni i i

f nk k nki i
k nk

Y X u Y X u
Y u X u

X u
 

     
     

 
      (14) 

     Carrying out all indicated derivatives in equations (13) and (14) the following 
consistent tangent matrix is derived, 

 
( )

( )

n rn n i

b b b b rn nk

n rn n i

f f f f rn nk

A H G G f u
C

A H G G f u

       
       

 

 
           (15) 

where the derivatives i

rn nkf u  are obtained by differentiating properly the 

adopted cohesive crack law. 

     Thus, the corrections i
kX i

nku , obtained from equations (13) and (14), 

is given by 

 
 
 

1

ii
b nkk

i i
nk f nk

Y uX
C

u Y u





         

       

             (16) 

     Within a given load increment k the solution is obtained by cumulating the 
corrections computed by using equations (16) as follows 

i+1 i i
k k kX = X +δ X              (17) 

i 1 i i
nk nk nku = u +δu                        (18) 

     The tolerance of this non-linear process is applied on the variation of the 

crack opening corrections, i.e., 1i iu u tolerance  . 

5 Examples 

In this section one example is presented to illustrate the efficiency of the 
proposed numerical model to analyse crack growth. In this example, we are 
analysing the crack propagation in a concrete four point-bending beam proposed 
by Galvez et al. [9]. The analysed beam is defined in Figure 2. The geometry is 
given by the beam length of 675mm, its height of 150mm and a central notch 
75mm deep. The material properties were taken from Galvez et al. [9], who have 
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performed a laboratory test: tensile strength ' 3.0tf MPa , Young’s modulus 

37000E MPa , Poisson ratioυ= 0.20 , and the fracture energy 

69 /fG N m . 
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Figure 2: Analysed four-point beam. Dimensions in mm. 

 

 

Figure 3: Load × displacement curves. 

     For the present analysis three cohesive laws were used: linear, bi-linear and 
exponential. For all analysed cases, the load was applied in 24 increments. The 
adopted tolerance within each increment was 510 . We have tested both non-
linear system solution schemes discussed previously: a) based on the use of 
constant operator; b) based on the use of the consistent tangent operator. The 
obtained results are given in Figure 3, in which the tangent operator is identified 
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by the symbol CTO. The other curves are obtained by using the constant 
operator. Figure 4 illustrates the crack growth process during the beam loading, 
leading to rupture surfaces similar than the one experimentally obtained. 
     Although all the results are in accordance with the experimental results, it 
seems that the solutions obtained by using the tangent operator is more accurate. 
Moreover, the tangent operator give always more stable solution requiring a 
reduced number of iterations at each load increment. We can see that the 
descendent branch obtained by using constant operator is slightly different due to 
the cumulated errors coming from the large number of required post-pick 
iterations.  
 

  

  

  

Figure 4: Crack growth profile during the load process. 
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Figure 5: Number of iterations during some load increment intervals. 
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     To emphasize the great differences between these two system solution 
schemes, the iteration number to reach the equilibrium at some specific load 
increments are given in Figure 5. It is important to see that the constant operator 
scheme require very large numbers of iterations after pick what may led to more 
inaccurate solutions. 

6 Conclusions 

We have derived and implemented a BEM formulation to analyse cohesive crack 
propagation based on using consistent tangent operator. The standard procedure 
based on constant operator to model crack propagation has also been 
implemented for comparison. The formulation based on the use of tangent 
operator has shown to be more stable and lead to more accurate results in 
comparison with the standard procedure. The use of tangent operator has shown 
to be always recommended to analyse crack propagations, particularly for the 
analysis that reach the after pick region.  
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