
 
 

Hybrid finite element method in supersonic 
flutter analysis of circular cylindrical shells 

F. Sabri1, A. A. Lakis1 & M. H. Toorani2 
1Department of Mechanical Engineering, 
Ecole Polytechnique of Montreal, Canada 
2Nuclear Engineering Department, Babcock & Wilcox Canada, Canada 

Abstract 

This study is focused on the aeroelastic behaviour of circular cylindrical shells in 
a supersonic airflow. The development is based on a combination of Sanders’ 
thin shell theory and the classical finite element method. Potential and piston 
theory with and without the correction factor for shell curvature is applied to 
derive the aerodynamic damping and stiffness matrices. The influence of stress 
stiffness due to the shell internal pressure and axial loading is also taken into 
account. Aeroelastic equations in hybrid finite formulation are derived and 
solved numerically. The effect of shell boundary conditions; geometry and flow 
parameters on the structure response is investigated. In all study cases, the shell 
loses its stability by coupled-mode flutter where a travelling wave is observed 
during this dynamic instability. The results are compared with existing 
experimental data, other analytical and finite element solutions. The present 
study shows efficient and reliable results that can be applied for the aeroelastic 
design of shell structures used for aerospace vehicles. 
Keywords: FSI, hybrid element, flutter, cylindrical shells. 

1 Introduction 

Shells and plates are among the key structures in aerospace vehicles. For 
instance, these elements are used numerously in the fuselage and engine nacelles 
of airplanes and in space shuttles’ skin. As they are exposed to the external air 
flow and particularly supersonic flow, dynamic instability (flutter) is one of the 
practical considerations in the design and analysis of skin panels that may occur. 
Cylindrical shells could also show this kind of aeroelastic instability where 
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prevention of that behaviour is one of the primary design criterions, which is 
something that aeronautical engineers are challenged with. After introducing the 
application of piston theory in the aeroelastic modelling proposed by Ashley and 
Zartarian [1], many interesting experimental and theoretical studies started to 
investigate supersonic flutter of a cylindrical shell. Most of these researches are 
concerned with the development of analytical relations to investigate the effect 
of the shell and flow parameters on the critical flutter frequency. The aeroelastic 
models have been developed on the basis of the shell and piston theory to 
establish the coupled fluid-structure system. Olson and Fung [2] examined the 
effect of the shell boundary conditions and initial strain state, due to the internal 
pressure and axial load, on the dynamic behaviour of the given structure. They 
observed that the pressurized cylindrical shell fluttered at a lower level of 
freestream static pressure than predicted by theory [3]. Evensen and Olson [4] 
presented a non-linear analysis for calculating the limit cycle amplitude of a 
cylindrical shell. Dowell [5] investigated the behaviour of a cylindrical shell in a 
supersonic flow for different flow and shell parameters; an extensive description 
of panel flutter modelling has been addressed in his monograph [6]. Amabili and 
Pellicano [7] developed a model considering the geometric nonlinearities to 
study the supersonic flutter of the circular cylindrical shell. They also applied the 
nonlinear piston theory with the shell imperfection to reproduce the experimental 
data for a pressurized cylindrical shell [8].  
     The present study is focused on the development of a circumferential hybrid 
element for a circular cylindrical shell in a supersonic flow. The procedure is 
similar to the finite element development done for a vertical shell by Lakis and 
Paidoussis [9] and for a horizontal open shell by Selmane and Lakis [10]. Those 
developments resulted in a precise and fast convergence with less numerical 
difficulties. The element is a cylindrical frustum instead of the usual rectangular 
shell element. Linear Sanders’ shell theory; in which all the strains vanish for 
rigid body motions; is coupled with the linearized first-order of piston theory 
(including the curvature correction term) and also the potential theory to carry 
out the fluid-structure interaction model. The initial stress stiffening in the 
presence of shell internal pressure and axial compression is also applied into the 
formulation. Finally the linear mass, damping and stiffness matrix of the 
aeroelastic system are obtained and solved numerically.  

2 Structural model 

2.1 Structural mass and stiffness 

The equilibrium equations of cylindrical shells according to the Sanders’ shell 
theory are developed in [10] and [11]. The strain-displacement equations as a 
function of three infinitesimal displacements in axial (U), radial (W), and 
circumferential (V) directions are derived and given in [10] and [11]. The system 
of equilibrium equations described as a function of the displacement components 
and material properties are defined as: 

0),,,( ijJ PVWUL                                               (1) 
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where JL ( 3,2,1J ) are three partial differential equations and can be found 

in [10] and [11]. Matrix [P] is the elasticity matrix for anisotropic shell [11]. A 
circumferential cylindrical frustum based on the development done by Lakis and 
Paidoussis [9] is applied to generate the mass and stiffness matrix of the 
structural model. This element type (see Fig. 1) has two nodal circle with two 
nodal points i  and j .  

 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 1: Geometry of cylindrical frustum element. 

     There are four degrees of freedom at each node; axial, radial, circumferential 
displacement, and rotation. This kind of element makes it possible to use thin 
shell equation easily in order to find the exact solution of displacement functions 
rather than the approximation with the polynomial functions in the classical 
finite element method. This element selection results in a hybrid element where a 
convergence criterion of the finite element method is provided with greater 
accuracy. Consider the displacement components in the normal manner as: 
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where n  is the circumferential wave number. Lakis and Paidoussis [9] derived 
the exact analytical relations for the displacement shape functions based on the 
equations of motion of shell associated with the system of equations (2). The 
final form of displacement functions is defined as: 
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where the nodal displacements vector }{  and displacement shape function 

matrix ][N  are given in [9]. Now the stress resultant can be defined as: 
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Therefore, the mass and stiffness matrix for each element are derived as: 

dABPBkdANNhm TT ]][[][][;][][][   
                         (5) 

 

where   is the shell density and rdxddA  . For the entire shell geometry, 

using the standard assembly technique in FEM and applying the appropriate 
boundary conditions, the global mass and stiffness matrices are found.  

2.2 Initial stress stiffness 

The influence of membrane forces on the dynamic stability of a cylindrical shell 
in the presence of the supersonic airflow is investigated. These membrane forces 

are due to the pressure differential across the shell mP , and axial compression  

xP . It is assumed that the shell is under equilibrium condition and also it has not 

reached its buckling state. The initial in-plane shear, static bending and 
transverse shear are not considered either. The stress resultant due to the internal 

pressure mP and the axial compression xP  are defined as: 
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The potential energy due to this initial strain is equal to: 
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where l  is the element length, xx  is the strain rotation about the x  axis,   is 

the rotation about normal to the x  plane, and n  is the rotation about normal 

to the shell element. The rotation vector is given by: 
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If the displacements are replaced by equation (3), the potential energy in terms of 
nodal degrees of freedom is generated as: 
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where vector  r  is defined as: 
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Therefore, the initial stiffness matrix for each element becomes: 
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With the help of Maple software, the analytical integration of equation (11) for 
each element is carried out. The initial stuffiness matrix is superimposed to the 
global stiffness matrix calculated in equation (5). 

3 Aerodynamic modelling 

Piston theory is a powerful tool for aerodynamic modelling in aeroelasticity. For 
a cylinder subjected to an external supersonic airflow parallel to the centreline of 
the shell, the fluid-structure effect due to external pressure loading can be taken 
into account by linearized first-order potential theory with (or without) the 
curvature correction term: 
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where p , U , M and are freestream static pressure, freestream velocity, the 

Mach number and the adiabatic exponent of air, respectively. At a sufficiently 
high Mach number ( 2M ) and neglecting the curvature term

2/12 )1(2 MR

W , 

equation (12) is simplified to the so-called linear piston theory as: 
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where a is the sound speed. In order to show the compatibility and power of 

this development compared with different loading theories, the potential solution 
proposed by Lakis and Laveau [12] is also applied to account for the pressure 
field. They have developed an exact expression for the nonlinearized 
aerodynamic pressure acting on the cylindrical shell that is exposed to external 
or internal incompressible flow. In this study, the effect of compressibility has 
been taken into account. This effect is entered through the calculation of Bessel’s 
functions for finding the velocity potential. Using the Laplace equation for the 
potential flow accompany with boundary conditions defined by impermeability 
and Bernoulli’s equation, the linear pressure load on the shell wall is given by: 
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where f  is fluid density and Z  is expressed in terms of Bessel’s functions of 

the first and second kind [9]. The radial displacement is defined in terms of the 

analytical solution of j (the complex roots of a characteristic equation related to 

the equations of motion and oscillation frequency of the shell) and the circular 
frequency   as: 
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In the following subsection, the pressure field for each aerodynamic loading is 
expressed in terms of nodal displacements.  
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3.1 Piston theory 

The pressure field expressed by equation (13) can be rewritten as: 
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Substituting equations (3) and (15) into equation (16), aerodynamic pressure may 
be defined as:  
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where the elements of matrix ][ fR  are defined in terms of shell radius (R), 

longitudinal coordinate (x), and the characteristic equation’s roots ().  

3.2 Piston theory with curvature term 

The aerodynamic pressure field for the case of applying equation (12) will 
become as: 
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where   is the freestream air density. It is seen that the freestream static 

pressure and velocity can be related together through the following equations:  
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3.3 Potential theory 

Considering the potential theory, the final form for pressure field is given as: 
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3.4 Aerodynamic damping and stiffness  

The general force vector due to the pressure field is defined as:  
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Substituting the displacement shape functions (eq. (3)) and the calculated 
dynamic pressure (eq. (17)) and integrating over the fluid-structure contact 
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surface, the aerodynamic damping ][ fc , and stiffness ][ fk  are determined for 

each element as: 
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     The same procedure can be done by substituting the different pressure fields 
as given in equations (18 and 20) into equation (21) to derive those local 
damping and stiffness matrices. Finally, global aerodynamic damping ][ fC and 

aerodynamic stiffness ][ fK  matrices are found through assembling procedure.  

4 Aeroelastic model in FEM 

The governing equations of motion in the global system of a cylindrical shell 
exposed to an external supersonic flow are found as:  
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      (24) 
where subscripts s and f refer to shell in vacuo and fluid, respectively. It should 
be noted that in the case of applying potential theory to account for aerodynamic 
loading, the mass matrix is modified by considering the fluid added mass. In 
order to find the aeroelastic behaviour of the shell, eigenvalues and eigenvectors 
of equation (24) are found by means of equation reduction method technique. 
Dynamic stability of the shell is investigated by studying the eigenvalues in the 
complex plane. The flutter onset is found when the imaginary part of the 
eigenvalue changes from positive to negative.   

5 Numerical results and discussions 

Following shell geometry and flow parameters are used for the given examples.  
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where tT  is the freestream stagnation temperature, and s is the shell density. 

A set of calculation is carried out to find the appropriate number of elements for 
shell discretization. It is found that the present model results in a very good 
accuracy of results using 20 elements. The first set of results along with those of 
experiment and other theories are presented in Table 1. In all of the cases, the 
instability is raised in the form of coupled-mode flutter. The proposed method 
shows a very good agreement with experimental and analytical results. 
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Table 1:  Comparison of shell flutter boundary at 3M  and 0 mx pp .  

 p  (psi) criticaln  L  (in)      )/( 2inlbE  

Experimental results2 0.380-0.420 20 15.40 0.35 16× 106 
Analytical results13 0.420 24 16.00 0.33 13× 106 
Analytical results3 0.550 25 15.40 0.35 16× 106 
Analytical results7 0.330 27 15.40 0.35 16× 106 
FEM results14 0.5621 34 16.00 0.33 13× 106 
FEM results15 0.5621 25 16.00 0.33 13× 106 
FEM results15 0.5621 26 15.40 0.35 16× 106 
Present results 0.522 26 15.40 0.35 16× 106 
Present results 0.382 25 16.00 0.33 13× 106 

 

 

Figure 2: The real and imaginary part of the eigenvalue of system versus 
freestream static pressure (n=20, Pm=Px=0.0 psi). 

     The complex frequencies of an unpressurized shell, Pm=0 and n=20, are 
determined using the potential theory and plotted in fig. 2. It is shown that the 
flutter occurs at the second axial mode where the imaginary part of eigenvalue, 
representing the damping of system, passes through zero at high freestream static 
pressure. The same behaviour was found by Olson and Fung [3].  
     The effect of the curvature term appearing in the piston theory is examined 
through the following example. The real and imaginary parts of system 
eigenvalues are plotted at the first two modes versus freestream pressure as 
shown in fig. 3. This figure shows that the real parts eventually merge into a 
single mode. For the further increasing the pressure, the shell loses stability by 
coupled-mode flutter once the imaginary part of complex frequency crosses the 
zero value. Prediction of critical freestream static pressure by using equation (12) 
is closer to the experimental results than evaluating pressure field by equation 
(13). The complex frequencies for the case that aerodynamic pressure is 
evaluated using equation (13) are plotted in fig. 4. It is stated that the piston 
theory including the shell curvature effect results in a better approximation to 
evaluate the pressure loading on a shell exposed to a supersonic flow. In order to 
investigate the effect of shell internal pressure, the complex eigenvalues for the 
critical circumferential wave number n=23, with the shell internal pressure  
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Figure 3: System eigenvalue versus freestream static pressure when the 
curvature term is included in the piston theory (n=25, Pm=Px=0.0 
psi). 

 
 

 
 

                 Freestream Static Pressure (Psi)                                 Freestream Static Pressure (Psi) 
 

Figure 4: System eigenvalue versus freestream static pressure without 
considering the shell curvature effect (n=25, Pm=Px=0.0 psi). 

 
 

 

Figure 5: System eigenvalue versus freestream static pressure considering 
the shell internal pressure (n=23, Pm=0.5psi, Px=0.0 psi). 
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Figure 6: Flutter boundaries for stressed shell, ♦ lbpx 0.0 ; ∆: lbpx 30 . 

 

Figure 7: Flutter boundaries for different RL /  ratios, ▲ 4/ RL ; ♦ 2/ RL ; 

● 1/ RL . 

pm=0.50psi, are shown in fig. 5. In this case, the flutter occurs at higher value of 
freestream static pressure ( 1.00 psip  ) since the shell stiffness increases due to 

applied internal pressure.  
     The effect of axial compression on the flutter boundary is also shown in fig. 
6. The axial load, Px, decreases the stiffness of the shell, which results in lower 
critical freestream pressure compared to the unstressed shell.  
     Figure 7 presents the effect of length-to-radius ratio (L/R) on the critical static 
pressure. For L/R=1, the shell loses its stability at n=18 and P∞=0.171 psi while 
for L/R=4 onset flutter occurs at n=31 and P∞=1.535 psi. 

6 Conclusions 

An efficient hybrid finite element method is used to deal with the dynamic 
stability of circular cylindrical shell subjected to an external supersonic flow. 
Linear Sanders’ shell theory is coupled with two different potential and piston 
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theory to account for aerodynamic pressure field to derive the aeroelastic 
equations of motion. It is observed that the piston theory has a better 
approximation in describing the fluid–structure interaction phenomenon in a 
supersonic airflow. There is a good agreement for prediction of flutter onset with 
existed results of experiment, other analytical approaches and FEM analysis. In 
all cases, only one type of instability is found (known as coupled-mode flutter in 
form of travelling wave flutter) mostly in the first and second longitudinal 
modes. Shell internal pressure has stabilizing effect while the axial compression 
leads to the lower flutter boundary. The developed model is capable to provide 
reliable results with less computational cost compare to the commercial FEM 
software where for such analysis, they have some restrictions.  
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