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Abstract

The approach presented in this paper is based on the Adaptive Cross Approxima-
tion (ACA) applied to the matrices coming from the Boundary Element Method
(BEM) with multi-domain. The algorithm uses a hierarchical matrix (H-matrix)
storage approach splitting the coefficient matrices representing the interactions
inside the sub-domains into many blocks where rank of the off-diagonal blocks
is reduced with the help of ACA approximation. The sub-domains are then cou-
pled through the iterative process. These optimisations of the coefficient matrices
in conjunction with highly effective algorithms for manipulation with H-matrices
allow one to perform the operation of matrix-vector multiplication with almost
linear complexityO(NlogN). The approach allows one to solve the linear systems
of equations for BEM with multi-domain having nearly 100.000 DOFs using the
usual PC. This paper formulates the approach and demonstrates its numerical prop-
erties by means of a theoretical example involving a cube with 27 sub-domains.

1 Introduction

The Boundary Element Method (BEM) with multi-domain [1–3] produces as many
coefficient matrices as the number of sub-domains in the system. Those coeffi-
cient matrices can be coupled within either one matrix or unified into one system
through the iterative process [4].

The former approach works well if the neighboring sub-domains are coupled
exploiting the continuity of potentials and normal fluxes. However, if this is not
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the case and the relationship between the sub-domains have to be expressed using
the constraint equations, the latter approach has to be used [4].

In the case with iterative coupling of the sub-domains, each sub-domain pro-
duces a dense coefficient matrix having O(N2) storage requirement. The solution
of such matrices forces the usage of direct LU-based methods requiringO(N3) of
floating point operations.

In this way the calculation becomes too expensive from a computational point
of view thus representing a big obstacle for solving large scale BEM problems
involving more than 20.000 unknowns.

The method presented in this paper allows to compresses the dense matrices
using the Adaptive Cross Approximation (ACA) [5] algorithm. The method uses a
hierarchical matrix (H-matrix) storage approach [6] where each sub-domain of the
model is split into many blocks classified into two categories, weakly and strongly
coupled. The formers are off-diagonal blocks which represent remote interactions
between the source points and field elements, and therefore can be approximated
by low-rank matrices using the ACA approach [5]. These blocks are stored in a
special Rk-format [6]. The latter blocks describing close interactions between the
source points and field elements are stored without any changes in a full-matrix
format [6].

This reorganisation of the LSE, implemented in conjunction with algorithms for
manipulation with H-matrices reduces the calculation complexity of matrix-vector
multiplication to approximately O(NlogN). The simplification of MVM reduces
considerably the computational burden of the solving stage and shows much better
solution time in comparison with standard iterative solvers such as preconditioned
GMRES, CG etc.

This paper formulates the approach and comments on the performance of BEM
with multi-domain using the hierarchical matrices and ACA. The theoretical exam-
ple involving nearly 100.000 DOFs is solved on a usual desktop PC.

The paper is organised as follows: in Section 2, the BEM with multi-domain
method formulation for Laplace equation is considered; Section 3 formulates the
method for iterative coupling of the sub-domains; Section 4 demonstrates the
numerical results of application to the theoretical example involving a model with
27 sub-domains and finally Section 5 makes the conclusions.

2 Boundary Element Method formulation

Consider solving the potential equation for the unknown scalar field u(x) given
by:

∇ · [−k∇u(x)] = 0, x ∈ Ω ⊆ R3 (1)

where k is conductivity, Ω is the integration domain with boundary Γ = ∂(Ω)
of outward unit normal n̂, and proper boundary conditions are applied to Γ, i.e.
Dirichlet or Neumann type. Then, the boundary integral formulation for eq. (1)
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can be expressed in the following way [7, 8]:

ciu(xi) +
∫

Γ

q∗(x,xi)u(x) dΓ −
∫

Γ

u∗(x,xi)q(x) dΓ = 0, (2)

where u is the unknown field, q its normal derivative in n̂ direction, u∗ the Green’s
function of Laplace equation such that ∇2u∗ + δ(xi,x) = 0, q∗ its normal deriva-
tive in n̂ direction, and cs is the self-interaction coefficient. In 3D problems u∗ and
q∗ become: u∗ = 1/(4πr) and q∗ = −r·n̂/(4πr3), respectively, where r = x−xi

and r = |r| is the distance between the field (x) and source (xi) points.
In order to solve eq.(2), Γ is discretised into Ne constant triangular boundary

elements Γ. Thus, the discretised boundary integral equation becomes:

ciui +
Ne∑
j=1

hjuj −
Ne∑
j=1

gjqj = 0, (3)

where ue is the potential at the CFN in the j-th element, qj is the mean normal
flux at central DFN of j-th element, and qj and hj are the following integrals:

gj =
1
4π

∫
Γj

1
r
dΓj (4)

hj = − 1
4π

∫
Γj

r · n̂
r3

dΓj (5)

The assembly scheme consists in appending one equation (2) per each selected
source point xi per sub-domain to the appropriate system of equations (A x = b),
where A ∈ Rn×m contains the coefficients hj and gj , x is a 1-column array
with the unknown u and q, b is the right hand side 1-column array formed by the
boundary conditions. The matrix A will be presented in hierarchical format [6].

3 The method formulation

An initial BEM 3D model is decoupled into a number of independent sub-domains
{Ω1,Ω2, · · · ,ΩN} each of which usually has different material properties. Those
sub-domains form the appropriate linear systems of equationsAixi = bi according
to Section 2, where i is an index of sub-domain. The matrices {A1, A2, . . . , AN}
that correspond to the sub-domains Ω1,Ω2, . . . ,ΩN are represented in hierarchi-
cal format [6]. Each sub-domain is solved independently taking into account the
results from all its neighbors, i.e. each iteration includes the following stages:

1. The method forms an initial guess for q that is located on the interfaces
between the current sub-domainA and all its adjacent neighbors. In general,
as an initial guess either u or q can be considered, but for this particular
explanation it is assumed that the initial guess is always q. In order to refresh
the right-hand side vector RHS, the initial guess has to be applied as the
artificial Neumann boundary conditions. For the sake of simplicity, the part
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of the coefficient matrix corresponding to the imposed artificial Neumann
boundary conditions is allocated as a separate structure called refreshing
matrix R. Thus, each sub-domain forms the local LSE: A x+R Guess =
RHS.

2. Update the RHS vector of a local LSE with the current value of Guess
vector.

3. Solve the system of equation Ai xi + Ri Guessi = RHSi for the current
sub-domain and obtain the fluxes and the potentials at each freedom node.

4. The potentials that are the result of previous step are imposed as the artificial
Dirichlet boundary conditions to all adjacent neighbors. Consequently, all
adjacent sub-domains have the new values for the potentials u.

5. For each sub-domain the following steps has to be performed: update the
right hand side term with either artificial boundary conditions or imposed
initial guess or both; solve the system of equations to get the normal fluxes
at the freedom nodes.

6. Update the normal fluxes q∗Ω1
= qΩ1 +(qΩ1−qΩ2)/r, where r is a relaxation

factor r > 1.
7. Test the convergence

MAX(un+1 − un)/un < error (6)

where un+1 is a value of the potential at n + 1 iteration whereas un is at
iteration n;

MAX(qΩ1 − qΩ2)/qΩ1 < error (7)

where qΩ1 is a value of a normal flux for the sub-domain Ω1 and qΩ2 is a
value of the corresponding normal flux in sub-domain Ω2. if (6-7) are not
achieved return to step 2.

The system of equations for each sub-domain is computed and approximated only
once at the very beginning of iterative scheme whereas the RHS is refreshed with
every iteration.

An example (see Figure 1) shows how the iterative technique is applied.
The sub-domain Ω1 has 6 surfaces and only 4 which the boundary conditions are

known for, i.e. there are two surfaces with unknown boundary conditions. At the
very beginning of iterative scheme, an initial guess has to be formed for those two
surfaces, i.e. the boundary conditions for the normal flux over those surfaces have
to be imposed. Hence, after this operation, the sub-domain Ω1 has the boundary
conditions for all surfaces. The coefficient matrix A1

H can now be built and the
RHS can be computed taking into account imposed boundary conditions q11 and q12 .
Once the system A1

Hx1 = RHS1 is solved and appropriate values for u1
1 and u1

2

are known, they can be applied as temporary Dirichlet-type boundary conditions
to the sub-domains Ω2 and Ω3 appropriately. Then, the sub-domain Ω2 has the
boundary conditions for all surfaces excluding the only one, where an initial guess
q22 has to be applied again. Once the system A2

Hx2 = RHS2 is solved it will
produce the BC for the sub-domain Ω4. In this way, an initial guess q32 has to be
applied in order to produce the integrity of the whole system. The iterative scheme
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Figure 1: Iterative technique for BEM with multi-domain. The strategy for cou-
pling two sub-domains consists of six steps: 1 - to solve the LSE for
a local sub-domain taking into account the initial guess for the normal
fluxes distributed over the interface, 2 - to get the solution for the poten-
tials located on the same interface, 3 - use the solution for the potentials
as the artificial BC which is at the same time the initial guess for the con-
nected sub-domain (4), 5 - solve the LSE for the next sub-domain and
get the solution for the normal fluxes, 6 - compare the solution for the
normal fluxes with the initial guess for the first sub-domain.

for the sub-domain Ω1 of the model demonstrated in Figure 1 is shown in Figure 2.
At the next stage of iterative scheme, the new values for q11 , q12 , q22 and q32 has to be
computed and appropriate RHS are refreshed. In order to do so, let’s consider the
sub-domains Ω1 and Ω2. Once the system A2

Hx2 = RHS2 is solved taking into
account an enforced value for u2

1, an appropriate value for q21 will be computed.
In fact, q11 and q21 correspond to the normal flux of the same element and therefore
they have to be compared in order to be adjusted for the next iteration. Having an
initial value for q11 from Ω1 as well as a new one q21 from Ω2, those two values can
be prepared for the next iteration according to the following expression:

q11
∗

= q11 + (q11 − q21)/r (8)

where r is a relaxation factor r > 1, q11
∗

is a new value for q11 from the sub-domain
Ω1.
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Figure 2: Coupling the sub-domains Ω1 and Ω2 of the model shown in Figure 1:
A is the entire coefficient matrix, RHS is the corresponding right hand
side, BC is the vector of known boundary conditions, Guess is the vec-
tor of the initial guess, X is the result vector and u and q are the vectors
with the current results for the potentials and normal flux respectively.

In this way, all imposed BC has to be updated and the RHS refreshed. Once this
is done, the next iteration starts. At the end of each iteration the convergence has
to be tested in order to make a decision if more iterations are needed see eq.(6), i.e.
if the maximal relative difference between the potential at current iteration and at
the previous one is less than an appropriate error which is set up in advance, then
the scheme must stop. Instead of the potentials, the normal fluxes can be used.

Another expression (7) is for the normal fluxes only, i.e. if the maximal relative
difference between all corresponding normal fluxes over the all interfaces shared
between two volumes (in this case Ω1 and Ω2) is less than an appropriate error
which is set up in advance, then the scheme must stop. Both expressions (6-7) are
used at the same time in order to secure the precision of iterative scheme.
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Figure 3: The front 2D representation of 3D BEM with a multi-domain model con-
sisting of 27 sub-domains with uniformly distributed conductivity k = 1.

4 Case study

This section examines the theoretical example in order to verify the accuracy, stor-
age requirements and the complexity of the solution of LSE for BEM with multi-
domain using the ACA-based approach and iterative coupling.

4.1 The model description

The problem represents a Laplacian equation in a cube consisting of 27 sub-cubes
coupled together as shown in Figure 3. The model is meshed with triangular con-
stant elements involving different level of mesh refinement yielding up to 95504
BEs.

Despite the ability of the developed method to deal with the models where
the sub-domains have different material properties, the conductivity of the sub-
domains is selected to be the same everywhere k = 1. This allows to check the
accuracy of the numerical solution against the analytical one which is known for
the ’Cube-like’ and in this particular case is defined as ux = 1 − x/3 for the
potentials, where x is the x-component in 3D-coordinates (x,y, z) of the DOF
(see Figure 3).
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Figure 4: The coefficient H-matrix (to the right) and the refreshing H-matrix (to
the left) for the sub-domain Ω1 of the model shown in Figure 3 meshed
with 22566 triangular BEs: dark blocks are Full-matrices and the grey
ones are Rk-blocks.

Figure 4 demonstrates how the coefficient and refreshing matrix looks for a sub-
domain Ω1 of the model introduced in Figure 3 if it is meshed with 22566 BEs.

4.2 The numerical properties

Tables 1-4 demonstrate the numerical properties of the developed approach.

Table 1: The memory consumption (in Mb) required to store the coefficient and
refreshing matrices depending on the ACA-error εACA and N .

N/εACA 1e-01 1e-02 1e-03 1e-04 1e-05

1944 3.1 3.1 3.1 3.1 3.1

5616 28.3 30.1 32.2 34.6 36.9

10604 63.2 75.9 89.4 105.9 113.4

22566 157.4 203.9 255.5 319.4 390.6

47568 275.5 462.2 649.5 882 1128

95504 833 1156 1509.2 - -
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Table 2: The CPU time (in sec) required to solve the LSE depending on the ACA-
error εACA and N .

N/εACA 1e-01 1e-02 1e-03 1e-04 1e-05

1944 14 14 14 14 14

5616 19 20 23 25 26

10604 23 25 28 40 42

22566 63 68 77 98 119

47568 153 178 224 282 366

95504 390 425 - - -

Table 3: The second norm of the difference between the analytical San and numer-
ical Snum solution εAN = ||San−Snum||2 in function of both the number
of DOFs N and εACA.

N/εACA 1e-01 1e-02 1e-03 1e-04 1e-05

1944 0.0071 0.0071 0.0071 0.0071 0.0071

5616 0.014 0.0037 0.0032 0.0032 0.0032

10604 0.024 0.0029 0.0026 0.0026 0.0026

22566 0.034 0.0029 0.0024 0.0024 0.0024

47568 0.051 0.011 0.01 0.01 0.01

95504 0.049 0.008 - - -

5 Conclusions

The memory consumption grows as the εACA decreases as well as grows propor-
tionally to the increase of N as shown in Table 1.

As it is observed, the compression ratio increases as the number of unknowns
increases. Thus, the same model meshed with nearly 100.000 BEs has higher com-
pression ratio (8.7%) than the model meshed with 10.000 of BEs (46.6%).

The method requires more CPU time if εACA decreases as well as when the
number of unknowns increases (see Table 2).

As is shown in Table 3, εAN decreases as the number of BEs increases. How-
ever, if the ACA-error εACA is high, the error εAN may grow due to the fact
that the off-diagonal blocks of the coefficient matrix are heavily approximated
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Table 4: The compression ratio of the coefficient and refreshing matrices depend-
ing on the ACA-error εACA and N .

N/εACA 1e-01 1e-02 1e-03 1e-04 1e-05

1944 101.6 101.6 101.6 101.6 101.6

5616 82.6 89 96.4 104.8 113

10604 46.6 59.8 73.2 89.9 107.2

22566 27.2 36.5 46.8 59.4 73.4

47568 11.7 19.6 27.6 37.3 47.7

95504 8.7 12.1 15.8 - -

causing the serious damage to the coefficient matrix. Nevertheless, in general case
the higher level of mesh refinement improves the precision of the solution against
the analytical one.
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