
A time domain Galerkin boundary  
element method for a heat conduction  
interface problem 

R. Vodička 
Technical University of Košice, Civil Engineering Faculty, Slovakia 

Abstract 

A heat conduction problem with a material or other type interface is solved. The 
numerical method used includes a boundary element technique presented as a 
Galerkin boundary element method for the space variables together with 
convolution quadrature in time. The treatment of the interface conditions enabled 
them to be formulated in a weak sense, with generally curved interfaces and 
independent meshing of each side of the interfaces. Results of the examples 
present influences of non-conformingly meshed interfaces, a comparison with a 
known analytical solution, and the time evolution of the interface solution with 
different material properties of the substructures adjacent to the interface. 
Keywords: boundary element method, interface problem, non-matching meshes, 
heat conduction, convolution quadrature.  

1 Introduction 

Many problems of civil engineering are modeled by initial-boundary value 
problems (IBVP) for partial differential equations. Numerical algorithms used 
for their solution may also include methods based on boundary integral equations 
(BIE). If, in addition, the solved problem includes an interface, e.g. due to 
different materials in the analyzed structure or for algorithmic reasons such as 
parallelization, finding an efficient solver for determining the interface solution 
may be rather involved. Moreover, a time-dependence may even more 
complicate the task. 
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     The time-dependent problems can be successfully treated by BIE methods. A 
nice survey of BIE applications for time dependent problems is given by 
Costabel [1]. Such methods are widely and successfully being used also for 
numerical modeling of problems in heat conduction.  
     The formulation of BIEs, which leads to Symmetric Galerkin Boundary 
Element Method (SGBEM), has already become classical, see Bonnet et al. [2]. 
It has advantages of symmetry of used boundary integral operators and also their 
discretized forms – matrices used in numerical solution. It also provides nice 
convergence properties in energetic norms of Sobolev spaces. With time 
dependence, there appears a question how to resolve this aspect of the problem. 
It is possible to use complete space-time solution, or to treat the time variables 
separately, either by integral, usually Laplace, transform or by a time-stepping 
algorithm.  
     In the present paper, the approach introduced uses the Galerkin method only 
for space variables. The time dependence, which includes the use of convolution 
in the operators of the integral equations, is treated separately by calculation of 
the convolution quadrature as introduced by Lubich and Schneider [3], which is 
based on a linear multistep method and uses only the Laplace transform of the 
time-dependent fundamental solution. 
     The existence of an interface requires a split of the space domain into several 
parts in the solution and usually includes domain decomposition techniques to be 
used as described by Hsiao et al. [4] or Wohlmuth [5]. In the present approach, 
these are applied very naturally: A variational formulation, originally discussed 
by Carini [6], of the IBVP directly provides a BIE system with interface 
conditions directly included into the integral equations as an innovation of the 
original formulation. Moreover, these conditions are satisfied in a weak form, 
which has an advantage in the numerical solution for the both sides of the 
interfaces could be discretized separately. A similar algorithm has been 
presented for the use with elastic interface problems by Hsiao et al. [4], Langer 
et al. [7] or Vodička et al. [8]. 
     Independent meshing of both sides of an interface requires a special 
procedure for cross-transferring of the solution, mainly when the interface is 
curved. The present approach uses the implementation of data transfer with an 
auxiliary interface mesh referred to as common-refinement mesh; nevertheless 
there exist also other possibilities which have been discussed, for example, in de 
Boer et al. [9]. 
     The paper is divided into four main parts. In the first one, Section 2, the 
solved problem of heat transfer is briefly described. Then, in Section 3, the 
variational solution leading to a system of BIEs is presented and numerically 
solved in Section 4 by convolution quadrature in time and by a Galerkin method 
in space. Finally, Section 5 presents two examples with their solution by 
suggested approach. One of the examples includes a problem with known 
analytical solution, so that a comparison can be shown. The other example, 
although without an analytical solution, even defines different materials for sub-
domains and jumps in initial conditions along the interfaces. 
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2 A heat transfer problem with an interface 

Let us consider a body defined by a domain Rd in a fixed Cartesian 
coordinate system xi, i=1,…,d, with a bounded Lipschitz boundary =. Let 
Sdenote the smooth part of , i.e. excluding corners, edges, points of 
curvature jumps, etc. Let n denote the outward unit normal vector defined on S. 
     The presence of interfaces causes the domain  to be split into several parts. 
For the sake of simplicity, let us divide  into two non-overlapping parts A and 
B whose respective boundaries we denote A and B. There also exists a 
common part of both boundaries, let us denote this coupling boundary by c. 
     Let us denote the temperature solution of an initial-boundary value heat 

conduction problem with an interface in each sub-domain  as  txu ;  (the 

superscript  distinguishes the sub-domains, here it can be either A or B), 
obtained during a time interval tt ;0 . If neither volume heat sources nor 

convective boundary conditions are considered and each  is homogeneous, the 
problem can be formulated as follows: 
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     The equations include diffusivity coefficient =k/defined by specific 

heat , mass density  and thermal conductivity k. The function  txq ;  

determined by the normal derivative of the temperature field introduces heat flux 
density along the boundary. The split of each boundary into three non-
overlapping parts due to the boundary and interface conditions can be written 

as cqu   . The functions  txg ;  and  txh ;  introduce given 

boundary conditions, while the function  xu
0  defines the initial condition. 

     When a problem of heat conduction is to be solved by BIEs, the fundamental 
solution of the pertinent differential equation eqn. (1)1 is required. This is the 
solution of eqn. (1)1 at the point x of the equation, where the right hand side 
contains a point pulse at y and time instance , instead of zero. The function and 
its normal derivatives are given as follows: 
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     They will be used in the next section to introduce the energy functional and 
the kernels of the resulting BIEs. 

3 Variational formulation 

The SGBEM approach is usually connected with a variational principle based on 
a boundary saddle-point quadratic functional, the time dependent problems need 
it to be convolutive in time, see Bonnet et al. [2]. Let us introduce the boundary 
energy functional established by Carini et al. [6] and modified here for a 
different treatment of the interface conditions, as a function of boundary 
temperatures and flux densities 
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(3) 
The terms ĝ and ĥ are defined by the prescribed boundary values, eqns. (1)2,3,4, 
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     If 
Sx  , the free term  xcr

  is equal to one half along 
r  and vanishes 

elsewhere on  for any r=u,q,c or their combination. The marks ‘p.v.’ and ‘f.p.’ 
refer to the Cauchy principle value and the Hadamard finite part, respectively, 
the methods of strongly and hyper singular integral evaluation. 
     The weak solution of eqn. (1) can be obtained from the first variation of the 
energy functional it may provide the BIEs and also the interface conditionsA 
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slight rearrangement of the terms appearing in the first variation renders the 
relation 
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     The stationary point of the functional determined by its vanishing first 
variation provides the BIEs:  
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(6) 
     Notice that for points x from to the interface c the free term contains an 
unknown function, while the terms ĝ and ĥ defined in eqn. (4) do not contain 
this free term for interface points. It also makes true a weak representation of 
interface conditions eqns. (1)5,6 
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     This weak form of the interface conditions should be seen in view of Vodička 
et al. [8]: the compatibility condition eqn. (7)1 is satisfied with respect to sub-

domain A,  txuB ;  being assumed as a known function, on the contrary, the 

flux equilibrium condition eqn. (7)2 is satisfied with respect to sub-domain B 

and with  txq A ;  supposed to be given.  

4 Numerical solution 

The time variable will be treated in a way different from that one used for space 
variables. Therefore, there appears a difference also in the treatment of the 
weight functions in eqn. (5). First, let us suppose that the test function includes 
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an impulse at the time t;0 , so that it can be rewritten in a weak form with 

respect only to the space variables 
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     The convolution can be evaluated numerically, see Lubich [3], by a 
quadrature formula whose weights are determined with the help of Laplace 
transform  fL of a function f  
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and a backward difference formula of order p≤6 for ordinary differential 
equations with the generating function , see below eqn. (11). 
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     Let us rewrite the space double integrals in eqn. (8), using a mask integral 
kernel Z instead of the pertinent fundamental kernels U, Q, D. The 
approximation of the convolution at time =nth, where th=t̅/Nt is a time step and 
Nt is the total number of time steps, renders 

           
0

, ; ; d d , d d .
s r s r

n

y x n j j y x
j

v x Z x y w y S S v x x y w y S S
   

         
   

      Z   

(10) 

     The quadrature weight functions Zn
 are the coefficients of the power series 

expansion associated to the Laplace transform of the pertinent integral kernel Z 
evaluated at a point depending on the used backward difference formula 

          
0 1

1
, , ; , 1, .

mp
n

n
n mh

x y Z x y
t m

    
    



 

  
    

 
 LZ    (11) 

     The details of the quadrature weight function calculation can be found in [3]. 

The solution (either  txu ;  or  txq ; ) at j-th time step is denoted by the mask 

function    hj tjywyw ;  .  

     The numerical solution of eqn. (8) by the Symmetric Galerkin Boundary 
Element Method includes division of the boundaries into boundary elements. 
The simplest way of discretization suggests conforming isoparametric elements. 

The approximation of the functions  xw j
  and the choice of weight functions in 

eqn. (8) can be written in the following form 

       j
1

w , , 1, , .
wN

k k l
j w v v

k

w x x v x x l N


       


                    (12) 

     The functions  xk
w
  are the nodal shape functions, according to the 

discretization made, for the approximation k
j
w of the nodal values of the 

function  xw j
 , 

wN  is the number of nodal unknowns pertinent to 

function  xwj
 . The eqn. (8) can be written, after an appropriate reordering of the 

terms according to given and unknown data in the n-th temporal step, as follows: 
 

               

                 

               

             

0 0 0 0

1

0

* *

0 0 0 0

* *

ˆ ,

ˆ

uu u uq q uc c uc cn n n n

n

n u uu u uq q uc c uc cn n j j n j j n j j n j j
j

qu u qq q qc c qc cn n n n

n q qu u qq q qc cn j j n j j n j jn

e

e

       

        

       

      



   


  

    

        

   

   



U q Q u U q Q u

g U q Q u U q Q u

Q q D u Q q D u

h Q q D u Q q    
1

0

,
n

qc cn j j
j

 





    D u
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                 

                 
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*

0

,
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

   


      q D u Q q D u
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(13) 

     The symbols   
srisr MZ ,  denote matrices, whose elements are defined 

respectively by the relations 

             Z , d d , M d .
s r s

lk lkl k l k
sr v i w y x s v w xi

x x y y S S x x S
  

         
  

   Z   

(14) 

     The nodal values either prescribed or not are gathered into vectors  jr
w , with 

subscripts s,r=u,t,c introduced according to boundaries’ splits.  
     It should be clearly seen that the solution at each time step uses the same left 
hand side matrix with index 0 which is symmetric. Therefore, matrix 
factorization has to be performed only once. However, at each time step, the 
right hand side has to be evaluated from the results of the previous steps. The 

vectors  jr
ĝ and  jr

ĥ  contain nodal data given by the boundary conditions and 

appropriately evaluated by eqn. (4). The numbers en are the end-point correction 
weights of the p-th order Newton-Gregory quadrature formula introduced in 
order to obtain the convergence property according to [3]. Otherwise they can be 
set to unity. 

5 Examples 

Although the developed formulation is valid in 3D space as well, for the sake of 
simplicity we confine ourselves only to the 2D examples. Nevertheless, the 
algorithm presented here only for a split of the solution domain into two parts 
can be applied also for domains containing more sub-domains. An example 
therefore contains three sub-domains to demonstrate this possibility. 
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First, let us consider a square divided into two parts as shown on the left 
picture in Figure 1. This example has been taken to demonstrate the properties of 
the solution transfer across the interface. The material parameters have been set 
to unity and all calculations have been done without units. The initial and 
boundary conditions have been set according to the relations 

        
           

1 2 1 2

2 2
2 2 1 1

, ; 0 0, , 0 ; 0, 0, ; 0,

2, ; 4 1 exp , , 2 ; 4 1 exp .

u x x u x t q x t

q x t x t q x t x t

  

       
  (15) 

     The problem is solved up to the unit total time t̅.  
     The analytical solution is known, at least in the form of a series-expansion so 
that a comparison of analytical and numerical solutions has been enabled. The 
interface has been defined by a cubic spline passing through the points E, Si and 
F, with: S1[0.5;0.4], S2[1.0;1.1], S3[1.5;1.6]. Numerical solutions have been 
compared for three boundary element meshes. The coarsest mesh consists of four 
linear elements along the long segments of the outer contour of each sub-domain 
and one along the short ones. Five elements have been put along both sides of 
the interface meshed conformingly and a five-to-six non-conforming interface 
mesh has been chosen in the other case. The mesh has been then two times 
refined doubling at each step the number of elements. With respect to the time 
variable, the total time t̅ has been split into four equal time-steps for the first 
boundary element mesh. The time step has been also halved for the subsequent 
meshes. The order p of the backward difference formula, see also eqn. (11), has 
been two. 
     In this example, the behavior of the errors with respect to the refinement can 
be studied as long as the analytical solution can be calculated, too. The graphs of 
Figure 2 and Figure 3 show the distribution of errors relatively to the magnitude 
of the overall analytical solution obtained for conforming and non-conforming 
interface meshes, respectively, of temperatures u and heat fluxes q plotted 
against the arc length l of the interface measured from the point E. The letters in 
the legends refer to the letters which distinguish the sub-domains on Figure 1 
(left) and the numbers denote the smallest number of the elements used in the 
interface meshes. The superscripts ‘num’ and ‘ex’ refer to numerical and 
analytical results, respectively. 
     The results of conforming meshes are naturally smoother than those of non-
conforming meshes, their magnitudes, however, do not differ significantly.  
 

 

Figure 1: Geometry of the examples. 
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Figure 2: Errors for t= t̅, conforming meshes. 

 

Figure 3: Errors for t= t̅, non-conforming meshes. 

    

Figure 4: Errors at the point S3. 

Moreover, it can be seen that the errors diminish approximately four times for 
each refinement, especially for temperatures, which confirms the expected 
quadratic convergence of the errors, see Lubich and Schneider [3]. The 
equilibrium and compatibility of the data, supposed to be satisfied in a weak 
form, eqn. (5), are satisfied, with an excellent agreement for conforming meshes 
and a quite good fit also for the non-conforming meshes. 
     The evolution of the errors in time at the point S3 is shown on Figure 4, where 
both conforming and non-conforming mesh results are presented. The 
convergence observations from the previous paragraph can be repeated. The 
quadratic convergence can be observed, here caused by the choice p=2, see 
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Lubich and Schneider [3], a bit lower order appeared for the heat fluxes, 
especially non-conforming mesh. Notice that the coarsest mesh behaves 
differently in heat fluxes, probably due to the fact that it is actually rather coarse, 
with respect to the curvature of the interface and its approximation by linear 
isoparametric space elements. 
     In the second example, let us consider more realistic material parameters and 
real units, see Figure 1 (right). The initial and boundary conditions have been set 
as follows: the initial conditions have been given by different constant 
temperatures in each of the sub-domains: u0

A=290K, u0
B1=280K, u0

B2=320K with 
vanishing flux prescribed along the outer contour. The problem is solved up to 
the total time t̅ =1h. 
     The boundary element mesh contains equally distributed 32 linear elements 
along each circle of the boundary or the interface, with an exception of the upper 
half circles of the interfaces with respect to B sub-domains, which contain 20 
elements. The time step has been taken such that 16 steps have been done to 
reach t̅ with the order p=2 in the algorithm of the convolution quadrature. 
     The results shown on Figure 5 demonstrate the evolution of both calculated 
functions along the interfaces evaluated with respect to the inclusions at the time 
instances t=t̅. The data are plotted starting respectively from points A2, A3 
counter-clockwise, the arc angle is denoted by . No difference in the solution 
appeared between the upper and lower half circles, possibly caused by the 
different meshing properties supposed. 
     The graphs confirm expected behavior of the solution, where the heat flux 
shows the concentration at inclusion points which are closest to each other. The  
 

   

   

Figure 5: Solutions along the interfaces: A↔B
1 (top),A↔B

2 (bottom). 
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evolution of temperature is also natural, as depending on the size of the inclusion 
and its position they tend towards the expected values of a stationary solution. 

6 Conclusions 

A solution of interface heat conduction IBVP by a Galerkin boundary element 
technique has been discussed. In the proposed method, the two crucial points of 
the solution, treatment of the interface relations and time dependence, have been 
resolved satisfactorily by applying a variational principle to obtain a weak form 
of the interface conditions for the former crucial point and by utilizing a 
convolution quadrature method for obtaining a time-domain solution as the latter 
one. It was demonstrated by two simple but problem describing examples. The 
results provoke the further demonstration of the method in a wider range of 
problems with interfaces in a forthcoming paper. 
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