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Abstract

In this paper, we discuss the use of integrated radial basis functions (IRBFs) in
solving elliptic differential equations. Various formulations, namely point collo-
cation, subregion collocation, Galerkin and inverse statements, are considered.
IRBFs are incorporated into these formulations to represent the field variables.
Numerical results indicate that this use of IRBFs leads to a considerable improve-
ment in accuracy and convergence rate over the case of using conventional low-
order polynomials.
Keywords: integrated radial basis functions, collocation method, Galerkin method,
control volume method, boundary element method.

1 Introduction

Mathematical modelling of physical processes usually leads to partial/ordinary dif-
ferential equations (PDEs/ODEs). Consider a differential problem governed by

Lū = b, x ∈ Ω, (1)

where ū is the field variable, b a given function, L a differential operator, x the
position vector and Ω the domain. A function ū(x) can be sought in the form of
truncated series

ū(x) ≈ u(x) =
n∑
i=1

u(i)φ(i)(x) + γ, x ∈ Ω, (2)
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where
{
φ(i)(x)

}n
i=1

is the set of basis/trial functions which are known,
{
u(i)
}n
i=1

the set of nodal variable values to be found, and γ a known value. The weighted
residuals approach tries to reduce the residual of (1) to a minimum through∫

Ω

ψ(x) (Lu− b) dΩ = 0, x ∈ Ω, (3)

where ψ(x) is a weighting function. Different choices of ψ(x) result in differ-
ent discretisation formulations such as point collocation, subregion collocation,
Galerkin and inverse statements. More details can be found in [1].

RBF networks (RBFNs) have emerged as a powerful approximation tool [2].
A network relies on a set of points that can be uniformly/nonuniformly distributed
throughout the domain for the representation of a function. Some RBFs such as the
multiquadric and Gaussian basis functions can offer an exponential rate of conver-
gence. To avoid the problem of reduced convergence rate caused by differentiation,
integrated RBFNs (IRBFNs) have been proposed [3]. In this paper we discuss the
use of IRBFNs as an interpolating method for different discretisation schemes for
the solution of elliptic DEs. This discussion is based on our previous works on
IRBFNs reported in [4–7].

The remainder of the paper is organised as follows. Section 2 gives a brief review
of IRBFNs. Section 3 is concerned with the discussion of using IRBFNs as trial
functions for the solution of DEs, in which several representative examples are
given. Section 4 concludes the paper.

2 Integrated radial-basis-function networks

RBFNs allow a conversion of a function f from a low-dimensional space (e.g.
1D-3D) to a high-dimensional space in which the function will be expressed as a
linear combination of RBFs

f(x) =
m∑
i=1

w(i)g(i)(x), (4)

where the superscript (i) is the sum index, x the input vector, {w(i)}mi=1

the set of network weights to be found, and {g(i)(x)}mi=1 the set of RBFs.
An example of RBFs is the multiquadric (MQ) basis function
g(i)(x) =

√
(x − c(i))T (x − c(i)) + a(i)2, where c(i) and a(i) are the centre and

width of the ith MQ-RBF, respectively.
IRBFNs consist in decomposing the highest-order derivatives of u in (1) into

RBFs in the form of (4) (f(x) = ∂pu(x)/∂xpj ) and then integrating them to obtain
lower-order derivatives and the function itself

∂pu(x)
∂xpj

=
m∑
i=1

w
(i)
[xj ]

g(i)(x), (5)

∂p−1u(x)
∂xp−1

j

=
m+q1∑
i=1

w
(i)
[xj ]

H
(i)[p−1]
[xj ]

(x), (6)
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· · · · · · · · · · · · · · ·

u[xj](x) =
m+qp∑
i=1

w
(i)
[xj ]

H
(i)[0]
[xj]

(x), (7)

where the subscript [xj ] is used to denote the process of integration with respect
to xj ; q1 the number of centres in a subnetwork that is employed to approximate

a set of nodal integration constants, q2 = 2q1, · · · , qp = pq1; and H(i)[p−1]
[xj ]

=∫
g(i)dxj , H

(i)[p−2]
[xj]

=
∫
H

(i)[p−1]
[xj ]

dxj , · · · , H(i)[0]
[xj ]

=
∫
H

(i)[1]
[xj ]

dxj . For conve-

nience of presentation, we introduce another notation, H(i)[p]
[xj]

(x), to denote the

RBF (i.e. H(i)[p]
[xj ]

(x) ≡ g(i)(x)) so that H(i)[p−1]
[xj]

=
∫
H

(i)[p]
[xj ]

dxj . It is noted that
the new centres and their associated known basis functions in subnetworks are
also denoted by the notations w(i) and H(i)(x), respectively, but with i > m. An
IRBFN is said to be of order p if its starting point is the pth-order derivative.

We seek the solution in terms of nodal variable values for the purpose of having
a clear physical meaning and computational efficiency. The evaluation of (5)–(7)
at a set of collocation points {x(i)}mi=1, which is selected to coincide with the set
of centres {c(i)}mi=1, yields

∂̃pu

∂xpj
= H̃[p]

[xj ]
w̃[xj ], (8)

∂̃p−1u

∂xp−1
j

= H̃[p−1]
[xj ]

w̃[xj ], (9)

· · · · · ·
ũ = H̃[0]

[xj ]
w̃[xj ], (10)

where

w̃[xj ] =
[
w

(1)
[xj ]

, w
(2)
[xj ]

, · · · , w(m+qp)

[xj ]

]T
,

ũ =
[
u(x(1)), u(x(2)), · · · , u(x(m))

]T
=
[
u(1), u(2), · · · , u(m)

]T
,

∂̃ku

∂xkj
=

[
∂ku(x(1))
∂xkj

, · · · , ∂
ku(x(m))
∂xkj

]T
=

[
∂ku(1)

∂xkj
, · · · , ∂

ku(m)

∂xkj

]T
,

k = {1, · · · , p}, and the matrices H̃[.]
[xj ]

have entries
(
H̃[.]

[xj]

)(l,i)

= H
(i)[.]
[xj]

(x(l)),

where 1 ≤ l ≤ m and 1 ≤ i ≤ (m+ qp). In (8)–(10), the matrices, H̃[p]
[xj ]

, H̃[p−1]
[xj]

, . . . , H̃[1]
[xj]

, are augmented using zero-submatrices so that they have the same size

as the matrix H̃[0]
[xj]

.
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Owing to the presence of the constants of integration (extra coefficients), one
can add extra equations to the conversion system that transforms the RBF space
into the physical space(

ũ

ê[xj]

)
=

[
H̃[0]

[xj ]

K̂[xj ]

]
w̃[xj ] = C̃[xj]w̃[xj ], (11)

w̃[xj ] = C̃−1
[xj]

(
ũ

ê[xj]

)
, (12)

where C̃[xj] is the conversion matrix, ê[xj] = K̂[xj ]w̃[xj ] the set of extra equations.
When the boundary data involve derivative values, these extra equations can be
used to represent derivative boundary values in the xj direction.

Substitution of (12) into (5)–(7) yields

u(x) =
1
N

N∑
j=1

([
H

(1)[0]
[xj ]

(x), H(2)[0]
[xj ]

(x), · · ·
]
C̃−1
[xj]

(
ũ

ê[xj]

))
, (13)

∂u(x)
∂xj

=
[
H

(1)[1]
[xj ]

(x), H(2)[1]
[xj ]

(x), · · ·
]
C̃−1
[xj]

(
ũ

ê[xj]

)
, (14)

· · · · · · · · · · · · · · · · · · · · ·
∂pu(x)
∂xpj

=
[
H

(1)[p]
[xj ]

(x), H(2)[p]
[xj ] (x), · · ·

]
C̃−1
[xj ]

(
ũ

ê[xj]

)
, (15)

where N is the dimension of the problem and the approximate function u(x) is
taken to be the average value of the u[xj](x) due to numerical error.

The calculation of cross derivatives of u is based on the following relation

∂pu

∂xri ∂x
s
j

=
1
2

(
∂r

∂xri

(
∂su

∂xsj

)
+

∂s

∂xsj

(
∂ru

∂xri

))
, p = r + s, i �= j, (16)

which reduces the computation of mixed derivatives to that of lower-order pure
derivatives for which IRBFNs involve integration with respect to xi or xj only.

Since all integrals involved can be obtained analytically, IRBFNs only require a
set of distinct points for the approximation of a function.

3 IRBFNs for PDEs

IRBFNs are employed to represent the field variable. The governing equation is
discretised using various formulations, namely point-collocation, control-volume,
Galerkin and boundary integral equation schemes. We implement IRBFNs with
the MQ basis function. The MQ width a(i) is simply chosen to be the minimal
distance between the centre c(i) and its neighbours. The accuracy of a numerical
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scheme is measured through the discrete relativeL2 error of the solution u, denoted
by Ne(u). Let h and nip be the “mesh” size and the number of interior points.
Another important measure is the convergence rate of the solution u, defined by
Ne(u) ≈ θhν = O(hν) or Ne(u) ≈ θnνip = O(nνip) where θ and ν are the
exponential model’s parameters. Only 1D and 2D elliptic problems are considered
here.

3.1 Point-collocation schemes

For these schemes, the residual of (1) is exactly zero at certain points. There are no
integrations required in discretising (1). Two versions of IRBFNs are considered.

3.1.1 Two-dimensional IRBFNs
The problem domain is discretised using a set of scattered points (Figure 1a).
We employ (13)–(15) over the domain, i.e. 2D-IRBFNs. It can be seen that the
2D-IRBFN collocation technique is truly meshless. The accuracy of the tech-
nique is demonstrated through the solution of ∇2ū = sin(πx1) sin(πx2) on a
unit square with homogeneous Dirichlet boundary conditions. Its exact solution
is ū(x1, x2) = −(1/2π2) sin(πx1) sin(πx2). Four scattered data sets of interior
points using nip = {32, 52, 89, 145} are employed . We discretise the bound-
aries using uniformly-distributed points with nx1 = nx2 = √

nip. The value of
q1 is taken as 3nxj . The variable u is represented using IRBFNs of second order,

where ê and K̂ in (13)–(15) are simply set to null. For comparison purposes, the
conventional (differentiated) RBFN (DRBFN) approach is also considered here.
Results are displayed in Figure 2, indicating that the IRBFN approach is superior
to the DRBFN approach regarding accuracy and convergence rate. The solution
converges apparently as O(n−1.46

ip ) for IRBFN and O(n−0.51
ip ) for DRBFN.

(a) (b)

Figure 1: Point-collocation scheme: scattered point (2D-IRBFNs) and Cartesian-
grid (1D-IRBFNs) discretisations.
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Figure 2: Point collocation scheme, 2D-IRBFNs: accuracy by the IRBFN and
DRBFN methods.

3.1.2 One-dimensional IRBFNs
The problem domain is discretised using a Cartesian grid (Figure 1b). We employ
(13)–(15) on grid lines, i.e. 1D-IRBFNs. The construction of the 1D-IRBFN
approximations for a point x involves only points that lie on grid lines inter-
secting at x rather than the whole set of data points. The inversion is now con-
ducted for a series of small matrices rather than for a large matrix. This use of
1D-IRBFNs thus leads to a considerable economy in forming the system matrix
over that of 2D-IRBFNs. Consider the biharmonic equation ∇4ū = 256(π2 −
1)2[sin(4πx1) cosh(4x2) − cos(4πx1) sinh(4x2)] defined on an annulus domain
of radii R1 = 1/4 and R2 = 1/2 (Figure 1b) and subject to Dirichlet bound-
ary conditions (ū and ∂ū/∂n). The exact solution is ū = sin(4πx1) cosh(4x2) −
cos(4πx1) sinh(4x2). We employ 1D-IRBFNs of fourth order, where ê[xj] is made
up of the values of ∂ū/∂xj at the two end points of a grid line. Double boundary
conditions are thus incorporated into the system in an accurate manner. Table 1
shows that the proposed method produces a very high convergence rate, O(h5.39)
with relatively-low matrix condition numbers.

3.2 Boundary integral equation (BIE) schemes

These schemes are based on free-space fundamental solutions. One attractive fea-
ture of BIE schemes is that the differential equation is satisfied exactly. Consider a
Dirichlet biharmonic problem. The BIE analog of ∇4ū = b can be written as

C(y)ū(y) +
∫

Γ

∂GH(y,x)
∂n

ū(x)dΓ

=
∫

Γ

GH(y,x)
∂ū(x)
∂n

dΓ −
∫

Γ

(
∂GB(y,x)

∂n
v̄(x) −GB(y,x)

∂v̄(x)
∂n

)
dΓ

−
∫

Ω

GB(y,x)b(x)dΩ, (17)
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Table 1: Point collocation scheme, 1D-IRBFNs: Condition number of the system
matrix Ã and accuracy of the solution u. Notice that a(−b) means a ×
10−b.

Grid condÃ Ne(u)

11 × 11 2.93(1) 1.15(−2)

17 × 17 5.40(2) 1.05(−3)

21 × 21 2.12(3) 5.56(−4)

27 × 27 3.53(3) 4.81(−5)

31 × 31 1.41(4) 2.47(−5)

37 × 37 1.24(4) 1.46(−5)

41 × 41 3.41(4) 8.37(−6)

47 × 47 5.80(4) 1.97(−6)

51 × 51 8.37(4) 1.77(−6)

57 × 57 1.50(5) 1.37(−6)

61 × 61 2.29(5) 8.85(−7)

67 × 67 2.70(5) 5.87(−7)

O(h5.39)

where y is the source point, x the field point, Γ the piecewise smooth boundary of
a domain Ω in R2, C(y) the free term coefficient, v̄ the new variable defined as
v̄ = ∇2ū, n the outward normal direction at a point on the boundary, and GH and
GB the harmonic and biharmonic fundamental solutions.

For traditional BIEMs, two BIEs are required and often solved in a coupled
manner. Lagrange polynomials such as constant, linear and quadratic functions
are usually employed to approximate the variations of v̄ and ∂v̄/∂n along the
boundary.

A domain-type interpolation scheme is adopted here to represent the variable u,
from which approximations to the unknown variables v̄ and ∂v̄/∂n are derived.
From the prescribed boundary conditions ū and ∂ū/∂n, the values of ∂ū/∂x1 and
∂ū/∂x2 at a boundary point can be easily obtained. We implement 2D-IRBFNs
of fourth order, where ê[xj] is made up of the values of ∂ū/∂xj at the boundary
points. The 2D-IRBFN BIE technique requires only one BIE, namely (17). The
present unknowns are the values of u at the interior points. The algebraic system is
generated by applying the BIE (17) at the interior points. It should be emphasised
that the present equation system consists of the interior equations only, thus com-
pletely avoiding all difficulties in numerical computation caused by the singularity
of boundary integrals.
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Table 2: BIE scheme: accuracy and convergence rate.

Linear IRBFN-4

Ne(v) Ne(v)
nx1 = nx2 Boundary Interior Boundary Interior

5 4.6349(0) 1.7829(−1) 1.0325(−1) 2.6475(−1)

7 4.3553(0) 1.2632(−1) 2.1247(−2) 3.1643(−2)

9 4.0599(0) 9.0515(−2) 9.8104(−3) 1.0121(−2)

11 3.7946(0) 7.0285(−2) 5.6267(−3) 4.6423(−3)

13 3.5625(0) 5.7887(−2) 3.5808(−3) 2.5094(−3)

15 3.3602(0) 4.9755(−2) 2.4541(−3) 1.5060(−3)

17 3.1830(0) 4.4192(−2) 1.7799(−3) 9.7711(−4)

19 3.0262(0) 4.0332(−2) 1.3494(−3) 6.7476(−4)

21 2.8860(0) 3.7703(−2) 1.0595(−3) 4.9015(−4)

23 2.7592(0) 3.6049(−2) 8.5548(−4) 3.7082(−4)

25 2.6431(0) 3.5238(−2) 7.0667(−4) 2.8978(−4)

27 2.5356(0) 3.5226(−2) 5.9459(−4) 2.3265(−4)

29 2.4348(0) 3.6038(−2) 5.0821(−4) 1.9050(−4)

31 2.3393(0) 3.7778(−2) 4.4080(−4) 1.5844(−4)

O(h0.35) O(h0.84) O(h2.58) O(h3.52)

A test problem chosen here is ∇4u = 0 on −2 ≤ x1, x2 ≤ 2 with Dirichlet
boundary conditions. The exact solution of this problem is ū = (1/2)x1(sinx1

coshx2 − cosx1 sinhx2) Results concerning Ne are shown in Table 2, together
with those obtained by a linear-BIEM. The present method yields a much faster
convergence rate.

3.3 Galerkin schemes

For these schemes, the residual of (1) is zero in an average sense. Galerkin schemes
have a smoothing capability owing to their integral nature. Consider a rectangu-
lar domain. We use a Cartesian grid to generate the finite trial and test spaces.
1D-IRBFNs are employed on grid lines. The present solutions are constructed to
satisfy the boundary conditions using the point-collocation approximation and the
governing DE using the Galerkin approximation. A distinguishing feature here is
that the networks are sought to satisfy a priori the derivative boundary conditions
in an exact manner. Moreover, any derivative of the field variable is defined and
continuous throughout the entire domain.
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(a) Dirichlet conditions (b) Dirichlet and Neumann conditions
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Figure 3: Galerkin scheme, 1D-IRBFNs: Error Ne(u) versus the centre spacing h
for the Galerkin and collocation solutions. They converge as O(h3.84)
and O(h3.28) for (a) and O(h3.89) and O(h2.60) for (b).

3.3.1 Dirichlet boundary conditions
The accuracy of the 1D-IRBFN Galerkin method is demonstrated through the solu-
tion of ∇2ū = −(2π2/(1 + 2π2)) cos(πx1) cos(πx2) on −1 ≤ x1, x2 ≤ 1
with Dirichlet boundary conditions. Its exact solution is ū(x1, x2) = (1/(1 +
2π2)) cos(πx1) cos(πx2). Uniform grids, 3×3, 5×5, · · · , 71×71, are employed.
As shown in Figure 3a, error reduces rapidly with decreasing h for both the
Galerkin and collocation solutions. The former outperforms the latter regarding
accuracy and convergence rate. Condition numbers of the present system matrix
are in the range of 1.0 to 1.3 × 104.

3.3.2 Neumann boundary conditions
This problem is exactly the same as the previous one, except that Dirichlet bound-
ary conditions prescribed along the two horizontal boundaries are replaced with
Neumann ones. Figure 3b indicates that the accuracy of the Galerkin solution is far
superior to that of the collocation solution. The condition numbers of the Galerkin
approach are relatively low, varying from 3.24 × 100 to 1.16 × 104.

Through Figures 3a (Dirichlet-type problem) and 3b (Neumann-type problem),
it can be seen that the order of accuracy reduces from O(h3.28) to O(h2.60) for
the collocation solution, but slightly increases from O(h3.84) to O(h3.89) for the
Galerkin solution. The 1D-IRBFN Galerkin technique is able to work well for
Neumann boundary conditions without the need for refining the grid near the
boundaries, as is often the case with conventional techniques. This is a clear advan-
tage of the present implementation.
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Figure 4: Control-volume scheme: Node (i, j) and its associated control volume
Ω(i,j). Note that the dash lines represent the faces of the control volume.

3.4 Subregion-collocation/control-volume schemes

For these schemes, the weighting function is chosen to be unity over a control
volume. Control-volume (CV) formulations are based on the actual satisfaction of
the physical laws (i.e. the conservations of mass, momentum and energy) rather
than on the satisfaction of approximate discrete expressions controlled by means
of mesh size. The accuracy of a CV technique depends on both the approximation
of gradients (e.g. diffusive fluxes) and the evaluation of integrals involving these
gradients. For the latter, assume that the flux evaluations are sufficiently accurate,
the midpoint rule is capable of yielding second-order accuracy only. Consider the
diffusion equation ∇ · ∇u = 0 on 0 ≤ x1, x2 ≤ π. Its exact solution is ū =
(1/ sinh(π)) sin(x1) sinh(x2). The problem domain is discretised using a uniform

Cartesian grid. For each grid point (x(i)
1 , x

(j)
2 ), one can construct a CV Ω(i,j) with

its interfaces Γ(i,j) as shown in Figure 4. There is a full CV for an interior node and
only a half CV for a boundary node. The CV equation of the governing equation
takes the form ∫

Γ(i,j)
∇u · n dΓ = 0, (18)

which involves first derivatives of u only. Flux integrals over line segments of
Γ(i,j) are evaluated using Gaussian quadrature which facilitates a high-order accu-
rate solution. Two different cases of boundary conditions, namely (i) Dirichlet
conditions only and (ii) Dirichlet (x1 = 0 and x1 = π) and Neumann (x2 = 0
and x2 = π) conditions, are considered. The 1D-IRBFN approximations are con-
structed in the same manner as in the case of Galerkin schemes. Figure 5 shows
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a) Dirichlet conditions only
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b) Dirichlet and Neumann conditions
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Figure 5: Control-volume scheme, n = [9, 25, · · · , 5041]: Comparisons of the
accuracy and condition number between the conservative IRBFN and
standard CV methods.

comparisons of the condition number and accuracy of the conservative IRBFN
and standard CV methods. For the case of Dirichlet conditions, their rates respec-
tively are O(h3.00) and O(h1.84) for the accuracy Ne(u), and O(h−2.08) and
O(h−2.06) for the matrix condition number condÃ. For the case of Dirichlet and
Neumann conditions, they are O(h3.09) and O(h1.98) for Ne(u), and O(h−1.94)
andO(h−1.96) for condÃ. Both techniques have similar condition numbers, but the
former yields much faster convergence than the latter. Like in the case of Galerkin
schemes, conservative IRBFN solutions to Dirichlet and Dirichlet-Neumann prob-
lems have similar degrees of accuracy.

4 Concluding remarks

In this paper, trial functions are implemented using IRBFNs rather than the usual
low-order polynomials for the solution of elliptic DEs. Attractive features of
IRBFNs include (i) to result in mesh-free methods for the collocation statement,
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(ii) to provide effective treatments of irregular boundary geometries for Cartesian-
grid-based methods, (iii) to offer a proper way of implementing derivative bound-
ary conditions, (iv) to avoid the application of the BIE on the boundaries when the
domain-type approach is adopted for the inverse statement, and (v) to allow the use
of high-order integration schemes to evaluate flux integrals arising from a control
volume discretisation. Various examples are presented to demonstrate high-order
accurate solutions and accurate implementation of derivative boundary conditions
of IRBFNs.
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