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Abstract

An efficient Boundary Element Method for focused domain is developed. In this
method, whole boundaries are divided into near boundaries which are near to the
focused domain and far boundaries which are sufficiently far from it. We set up
boundary integral equations and express these integrals which contain unknown
quantities on the far boundaries as low order multipole moments, approximately.
Thus the number of unknowns and boundary integral equations set up are decreased
drastically by this method, and enables us to compute them efficiently. When
unknown quantities are required only in a specific domain, especially on large-
scale boundary value problems, this method enables us to compute them effi-
ciently. The capability of this method is verified with some numerical experiments.
Keywords: Boundary Element Method, 2D potential problem, focused domain,
multipole expansion, generalized inverse matrix.

1 Introduction

The Boundary Element Method (BEM) is one of the major numerical solutions
for boundary value problems and the Fast Multipole Boundary Element Method
(FMBEM), is in widespread use as an efficient solution for large-scale boundary
value problems.

The BEM is generally used to obtain all unknown quantities with uniform accu-
racy in a whole analytical domain. However, in reality, there are not a few cases
where the unknown quantities are required only in a specific domain, that is, the
focused domain for practical purpose. For example, we can point to corrosion or
anticorrosion analysis for the evaluation of anti-corrosion effect on specific parts
of structures such as boats and ships, and elastic analysis for the evaluation of
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strength on stress concentration zones. In such cases, it is advantageous to com-
pute more efficiently unknown quantities only in focused domain with the same
accuracy as the conventional BEM[1].

Based on the above-mentioned background, we developed a new efficient bound-
ary element method for a focused domain.

In this method, a whole boundary is divided into near boundaries which are near
to a focused domain and far boundaries which are sufficiently far from it (Fig. 1).
Then, we set up boundary integral equations (BIEs) whose collocation points are
on all the elements of the near boundaries and express these integrals which con-
tain unknown quantities on far boundaries as low order multipole moments by
using a multipole expansion of the fundamental solution. Moreover, we also set
up boundary integral equations whose weighting functions are harmonic functions
by the number of those multipole moments. The boundary integrals which con-
tain unknown quantities on the far boundaries are expressed approximately as the
multipole moments by using a generalized inverse matrix. Thus the number of
unknowns and boundary integral equations set up are decreased drastically by this
method, and enables us to compute them efficiently (Fig. 2).

This paper presents the efficient boundary element method for the focused
domain, that is the “Focused Domain Efficient Boundary Element Method (FD–
EBEM)”. The capability of this method extended to 2D potential problems is ver-
ified with some numerical experiment.
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Figure 1: Division of boundary into near and far boundaries.
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Figure 2: Reduction of the number of unknown quantities.

152  Mesh Reduction Methods

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 



2 BIE formulation and the conventional BEM approach

The BIE formulation and its discretization using the conventional BEM for 2D
potential problems are summarized in this section. They are fundamental to FD–
EBEM.

For simplicity, consider the following Laplace equation governing a potential prob-

∇2u(z) = 0 (∀z ∈ Ω) (1)

under the boundary condition u(z0) = u′ (z0 ∈ Γ ). u(z) is potential field in
domain Ω, Γ is the boundary of the Ω, and the symbol prime(′) quantities indicate
given values on the boundary.

All Dirichlet Boundary
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Field PointWhole Domain (Laplace Field)

Γ

Ω z

z0

z − z0

Im

Re

Figure 3: Domain Ω and boundary Γ (discretized).

2.2 BIE of potential problems

The BIE for this boundary value problem can be expressed as the following for-
mula:

c(z)u(z) = Re
[∫

Γ

u∗(z0, z)q(z)|dz| −
∫
Γ

q∗(z0, z)u(z)|dz|
]
, (2)

where q the flux q(z) = ∂u(z)/∂n(z), n(z) outward normal, z0 the collocation
point, z field point and c(z0) coefficients that are equal to 1/2 if z0 ∈ Γ and Γ
is smooth around z0, or 1 if z0 ∈ Ω; u∗(z0, z) and q∗(z0, z) are the fundamental
solution given by:

u∗(z0, z) = − 1
2π

ln(z − z0), q∗(z, z0) = − n(z)
2π(z − z0)

. (3)
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2.1 Setup of boundary value problem

lem in a 2D domain Ω (Fig. 3):



2.3 Discretization

In this subsection, discretization with constant boundary elements is explained for
simplicity. The boundary Γ is divided into N line elements Γk (k = 1, 2, · · · , N)
and one node zj0 is placed on each element. We obtain the following discretized
equation of BIE (2) in matrix form:

GΓqΓ = HΓu′
Γ , (4)

where

HΓ =



h11 · · · h1N

...
. . .

...

hN1 · · · hNN


 , GΓ =



g11 · · · g1N

...
. . .

...

gN1 · · · gNN


 ,

hjk =
δjk
2

+
∫
Γk

q∗(zj0, z)|dz|, gjk =
∫
Γk

u∗(zj0, z)|dz|, (5)

u′
Γ =



u′1
...

u′N


 , qΓ =



q1
...

qN


 , (6)

uk and qk (k = 1, 2, . . . , N) are nodal values of u and q on the element Γk,
respectively. Obviously, the construction of matrix HΓ and GΓ requires O(N2)
operations using the two expressions in Eq. (5) and the size of the required memory
for storing them is also O(N2) since they are in general non-symmetric and dense
matrices. The solution of system in Eq. (4) using direct solvers such as Gauss elim-
ination is even worse, requiringO(N3) operations because of this general matrix.
That is why the conventional BEM is not so efficient for large-scale problems,
despite its robustness in the meshing stage as compared with other domain based
methods [2].

3 FD–EBEM formulation for 2D potential problems

As stated in the previous section, the conventional BEM is not so efficient for
large-scale problems because of requiring vast operations and memory. FMBEM
was developed for getting over this weak point of the conventional BEM. But, it
is hard to say that FMBEM is always efficient, especially, in the case where the
unknown quantities are required only in a specific domain, because, FMBEM is
the method for obtaining all unknown quantities with uniform accuracy in a whole
analytical domain. In such cases, FD–EBEM enables us to compute efficiently
the unknown quantities only in a specific domain. In this section, we explain the
formulation of FD–EBEM for 2D potential problems.
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3.1 Setup of boundary value problem

For simplicity, consider the same Laplace equation (1) governing potential prob-
lem in a 2D domain Ω (Fig. 4) under the boundary condition u(z0) = u′ (z0 ∈ Γ )
as given in the previous section. We also assume that a specific domain is focused
domain ΩFocused in the whole domain Ω and potential u(z0), z0 ∈ ΩFocused

is a requisite unknown quantity. Far boundary ΓFar is sufficiently far from the
focused domain ΩFocused. Far boundaryΓ far and the center of multipolar moments
zc are determined so that ∀z ∈ ΓFar (⊆ Γ ) satisfy the following formula for
∀z0 ∈ ΩFocused:

|z − zc| � |z0 − zc|, (7)

Additionally, the boundary near the focused domain ΩFocused is denoted near

boundary ΓNear
(
= Γ ∩ ΓFar

)
, and ∃z0 ∈ ΓNear satisfies Eq. (7) for ∀z ∈

ΓFar (⊆ Γ ).
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zc
Multipolar Moments

Focused
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M�(zc)
ΩFocused

Near Boundary
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ΓNear
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Γ

Figure 4: Focused domain and classification of boundary.

3.2 Division of boundary integral into near and far boundary

Now, we deal with the boundary value problem where the potential u on the whole
boundaryΓ is given. Thus, the boundary integral contains unknown quantity in the
first right-hand term of Eq. (2), where z0 ∈ Γ . In this method, the first right-hand
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term of Eq. (2) is devided into the near boundary ΓNear and the far boundary ΓFar

part as follows:

c(z0)u(z0) = Re
[∫

ΓNear
u∗(z0, z) · q(z)|dz|

+
∫
ΓFar

u∗(z0, z) · q(z)|dz| −
∫
Γ

q∗(z0, z) · u(z)|dz|
]
. (8)

3.3 Multipole expansion of boundary integral on far boundary

The displacement component of the fundamental solution in complex notation
u∗(z0, z) can be transformed as the following formula:

u∗(z0, z) = − 1
2π

{
log |z0 − zc| + log

(
1 − z − zc

z0 − zc

)}
(9)

In the case where z0, z and zc satisfy Eq. (7), we can apply the following Taylor
series expansion:

log(1 − ξ) ≈
L∑
�=1

ξ�

�
|ξ| < 1, (10)

and we obtain

u∗(z0, z) ≈ − 1
2π

{
log |z0 − zc| −

L∑
�=1

1
(z0 − zc)�

· (z − zc)�

�

}
(11)

Therefore, the second right-hand term of Eq. (8) is described by Eq. (11) as fol-
lows. ∫

ΓFar
u∗(z0, z) · q(z)|dz| ≈ 1

2π

L∑
�=0

O�(z0 − zc)M�(zc) (12)

where

M�(zc) =
∫
ΓFar

(z − zc)�

�
· q(z)|dz|, O�(z) =

{
log |z| (� = 0)
z−� (� ≥ 1)

. (13)

In the case where z0 and z satisfy the following formula : Eq. (14), the finite series
of Eq. (12) is known to be sufficiently convergent by approximately 15 terms.

|z0 − zc| ≥ 3|z − zc| (14)

It means that the finite series of Eq. (12) is sufficiently convergent by a few terms
in the case where the collocation point z0 is placed in the focused domain ΩFocused

and on the near boundary ΓNear but it is not convergent in the case the collocation
point is placed on the far boundary ΓFar.
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3.4 BIE whose Collocation Point is placed on near boundary

When the collocation point z0 is placed on the near boundary ΓNear and the field
point z is placed on the far boundary ΓFar, z and z0 can satisfy Eq. (7). Therefore
Eq. (8) can be transformed into the following formula:

c(z0)u(z0) ≈ Re
[∫

ΓNear
u∗(z0, z) · q(z)|dz| −

∫
Γ

q∗(z0, z) · u(z)|dz|

+
1
2π

L∑
�=0

O�(z0 − zc)M�(zc)
]

(15)

Consider the case where we discretize boundary Γ by constant boundary elements
and set BIEs whose collocation points are placed on elements of the near boundary
ΓNear only. In this case, we can’t solve the simultaneous linear equations due to
insufficiency of equations by the increment of multipolar moments, or L. Addi-
tional equations for this insufficiency will be demonstrated in the next subsection.

3.5 BIE whose weighting functions are harmonic functions

We set up boundary integral equations whose weighting functions are harmonic
functions, that is O�(z − zc) by the number of those multipole moments, or L. In
this case, BIEs is the following formula:∫

Γ

O�(z − zc) · q(z)|dz| −
∫
ΓNear

P�(z − zc) · u(z)|dz|

−
∫
ΓFar

P�(z − zc) · u(z)|dz| = 0 (� = 0, 1, · · · , L) (16)

where

P�(z) =
∂O�(z)
∂n(z)

= − � · n(z)
z�+1

(17)

The process for expressing the integral in Eq. (16) which contains unknown quanti-
ties on far boundaries as these multipolar moments approximately is demonstrated
below. We discretize the boundary by constant boundary elements and obtain the
discretized BIE in matrix form:

[
KΓNear KΓFar

]{qΓNear

qΓFar

}
= JΓu′

Γ , (18)

where

KΓ =




k00 · · · k0N

...
. . .

...

kL0 · · · kLN


 JΓ =




j01 · · · j0N

...
. . .

...

jL0 · · · jLN


 , (19)

Mesh Reduction Methods  157

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 



k�k =




Re
[∫

Γk

P�(z − zc)|dz|
]

Im
[∫

Γk

P�(z − zc)|dz|
]

 , j�k =




Re
[∫

Γk

O�(z − zc)|dz|
]

Im
[∫

Γk

O�(z − zc)|dz|
]

 .

(20)

Re[z] and Im[z] represents a real and an imaginary part of z. We discretize Eq. (13)
by constant boundary elements in the same way.

M = IΓFarqΓFar , (21)

where

IΓ =




i01 · · · i0N
...

. . .
...

iL1 · · · iLN


 , i�k =




Re
[∫

Γk

(z − zc)�

�
|dz|

]

Im
[∫

Γk

(z − zc)�

�
|dz|

]

 ,

M =




M0

...

ML


 , M� =

[
Re[M�(zc)]
Im[M�(zc)]

]
.

Let us assume qj can be described as the following formula by using I+
ΓFar , Moore-

Penrose type generalized inverse matrix of IΓFar in Eq. (21) :

qΓFar ≈ I+
ΓFarM = ITΓFar

(
IΓFar · ITΓFar

)−1
M , (22)

where AT is the transposed matrix of A. Therefore the third left-handed term of
Eq. (16) is:

KΓFarqΓFar ≈ KΓFarITΓFar

(
IΓFar · ITΓFar

)−1
M . (23)

3.6 Simultaneous linear equations

As mentioned above, this method drastically reduces the number of unknown
quantities and the BIEs set up. We can set up the simultaneous linear equations
by discretizing Eq. (15) and Eq. (16), and substituting Eq. (23) as the following:[

GΓNear O

KΓNear KΓFarITΓFar

(
IΓFar · ITΓFar

)−1

]{
qΓNear

M

}
≈
[
HΓ

JΓ

]
u′
Γ , (24)

where

O =




O10 · · · O1L

...
. . .

...

O10 · · · O1L


 , Oj� =

{
Re[O�(z

j
0 − zc)]

−Im[O�(z
j
0 − zc)]

}
. (25)
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We can compute unknown quantities q on the near boundary ΓNear and multipolar
moments Ml(zc) by solving Eq. (24). In the case where a collocation point z0 is
placed in the focused domain ΩFocused, c(z0) = 1 in Eq. (15), hence unknown
quantity u in ΩFocused can be computed with the same level of accuracy as the
conventional BEM.

4 Numerical results

In order to examine the accuracy and efficiency of FD–EBEM, we carry out a
numerical experiment with this method and the conventional BEM.

4.1 Setup boundary value problem

We consider a tube-shaped Laplace field with a square hole as shown in Fig. 5.
Boundary conditions on the inner square and outer circle are Dirichlet conditions
as shown in Fig. 6. The requisite unknown quantity is assumed to be potential u
in focused domain ΩFocused shown in Fig. 5. The inner square and outer circle are
far boundary ΓFar and near boundary ΓNear, respectively. The center of multipole
moments zc is placed at the center of the outer circle so that ∀z0 ∈ ΩFocused satisfy
Eq. (14) for ∀z ∈ ΓFar. The number of multipole moments is set to be 15.

Focused Domain

Far Boundary

Near Boundary

ΓFar

ΓNear

zc

ΩFocused

Im

Re

θ
2

3
√

2

5

All Dirichlet Boundary Γ

Figure 5: Model for the numerical experiment.
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Figure 7: Neumann data (flux) q on near boundary ΓNear.

4.2 Verification of accuracy

For the problem indicated in the previous subsection, we divided ΓNear and ΓFar

into 1000 and 5000 constant line elements, respectively, and computed flux q on
ΓNear and potential u by this method and the conventional BEM.
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Fig. 7 compares this method with the conventional BEM in the computational
results of flux q on the near boundary ΓNear. Good agreement in computational
results is observed.

Fig. 8 compares this method with the conventional BEM in the computational
results of potential u on the line of parameter θ = 0 within the whole domain
Ω. Though this method differs from the conventional BEM in the computational
results external to the focused domain ΩFocused, they are in good agreement in the
focused domain ΩFocused.

It seems that this method is capable of computing flux q on the near boundary
ΓNear and potential u in the focused domain ΩFoacused with the same sufficient
accuracy as the conventional BEM.

4.3 Verification of efficiency

For the problem indicated in the previous subsection, we divided ΓNear and ΓFar

into constant line elements and computed unknown quantities by this method and
the conventional BEM.

The number of elements on ΓNear fixed at 1000 and the number of elements on
ΓFar is varied from 1000 to 10000. All the computations in this subsection were
done on Intel(R) Core(TM) i7–965 Extreme Edition(3.2 GHz).

Fig. 9 shows the relationship between computational time and the total number
of elementsN . It demonstrates that the computational cost of this method is about
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O (N), while the cost of the conventional BEM is about O
(
N3
)
. This method is

more efficient as the number of elements on far boundaries ΓFar is larger.
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Figure 9: Comparison of CPU time between FD–EBEM and the conventional
BEM.

5 Conclusions

In this paper, we presents the efficient boundary element method for the focused
domain, that is the “Focused Domain Efficient Boundary Element Method (FD–
EBEM)”. We validated FD–EBEM in accuracy and efficiency by carrying out a
numerical experiment.

There are many practical applications in which unknown quantities only in a
specific domain are required. This method can extended not only to potential prob-
lems but also any other boundary value problems such as elastostatic analysis.
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