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Abstract

A meshless BEM approach has been developed, which has been applied for solu-
tion of the Navier-Stokes equations. The approach subdivides the original prob-
lem domain in a number of circular sub-domains around nodes used to represent
the solution of the problem. Dual reciprocity method has been used to convert
the domain integrals into integrals over the boundary of the sub-domains. Six
equations are solved in 2D to obtain the solution of the Navier-Stokes equations,
of which two are for solving the velocity components, one for pressure and the
remaining equations are for solving for stresses. The developed formulation has
been tested on the lid-driven cavity problem and the results have been compared
to the results of Ghia et al., showing good agreement.
Keywords: Meshless method, integral equations, circular sub-domains, radial basis
functions, Navier-Stokes equations.

1 Introduction

Meshless approaches based on the integral equations are receiving increased atten-
tion due to their accuracy associated with the integral equations methods, of which
the most widely used so far has been the BEM, and the flexibility they offer as the
meshing requirements are either eliminated or largely reduced.

The Local Boundary Integral Equation (LBIE) method [2,3] uses domain decom-
position into a large number of circular sub-domains, with the source point in the
centre of the circle. The LBIE uses the concept of “companion solution” in order to
eliminate the single layer integral from the local boundary integral equation, leav-
ing the potential field as the only unknown in the equations. For source points that
are located on the boundary of the given problem part of the local circular bound-
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ary is replaced by the part of the global boundary and the integrals are evaluated
over this part of the global boundary and remaining part of the circle.

Recently [4] LBIE has been employed for solution of the Navier-Stokes equa-
tions by using the velocity-vorticity formulation in combination with the radial
basis functions (RBFs) used for interpolation of the field variables over the circu-
lar boundaries of the sub-domains.

Though the present formulation may seem similar to the LBIE in certain aspects,
overall it is a fundamentally different approach. Similarly to the LBIE it is imple-
mented over circular sub-domains where the source points are placed in the centres
of the circles and uses RBFs for interpolation of the field variables over the circu-
lar boundary. However, the present approach is implemented using the velocity-
pressure formulation, it does not use the companion solution concept and does not
need any integration over the boundary. More on the current formulation can be
found in Bui and Popov [5].

2 Velocity-pressure formulation

For the incompressible flow, the equation of continuity is

∇ · u = 0 (1)

The conservation of momentum for an incompressible fluid is expressed as:

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
=
∂σij

∂xj
+ ρFi (2)

where ui is the component of the velocity vector along the i direction, ρ is the
density and Fi is the net body force along the i direction; σij is stress tensor cor-
responding to the flow u, p. For Newtonian fluid

σij = −pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
(3)

where p is the fluid pressure, δij is the Kronecker delta and µ is the viscosity
coefficient.

The integral representation for Navier-Stokes equations for a given point x
inside the domain Ω bounded by boundaryS is given by Ladyzhenskaya (1963) [6]
as:

ui(x) =
∫

S

t∗ki(x, y)ui(y)dSy −
∫

S

u∗ki(x, y)ti(y)dSy +
∫

Ω

u∗ki(x, y)gi(y)dΩ

(4)
where gi = ρujui,j are convective terms; ti = σijnj are the traction components,
nj is the outward normal vector; uk

i is the velocity field fundamental solution of
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the Stokes equations. In two dimensions, u∗ki is given as [6]

u∗ki(x, y) = − 1
4πµ

[
ln
(

1
r

)
δik +

(xi − yi)(xk − yk)
r2

]
(5)

with a corresponding pressure qk which is given by

qk(x, y) = − 1
2π

(xk − yk)
r2

(6)

where r = |x− y|. The fundamental traction t∗ki(x, y) is defined as

t∗ki(x, y) = σ′
ij(u

k(x, y), qk(x, y))nj(y)

t∗ki(x, y) = − 1
πr

(xi − yi)(xk − yk)(xj − yj)
r3

nj (7)

The DRM approximation was introduced to express the domain integral in (4)
in terms of equivalent boundary integrals. The convective term is expanded in the
form

gi(x) =
N+A∑
m=1

fm(x)αm
l δil. (8)

The coefficient αm
l is unknown which can be determined by applying (8) on N

collocation nodes ym, (m = 1, . . . , N ). The collocation nodes are the nodes on
the boundary S and the nodes inside the domain Ω.

With the approximation (8), the domain integral in (4) becomes

∫
Ω

u∗ki(x, y)gi(y)dΩ =
N+A∑
m=1

αm
l

∫
Ω

u∗ki(x, y)f
m(x)δildΩ (9)

The new auxiliary velocity field (ûlm
i (x), p̂lm(x)) is defined by the following

equations

µ
∂2ûlm

i (x)
∂xj∂xj

− ∂p̂lm(x)
∂xi

= fm(x)δil (10)

∂ûlm
i

∂xi
= 0 (11)

Applying the Green’s identity to the new flow field (ûlm
i (x), p̂lm(x)) yields

ûlm
i (x) =

∫
S

t∗ki(x, y)û
lm
i (y)dSy (12)

−
∫

S

u∗ki(x, y)t̂
lm
i (y)dSy +

∫
Ω

u∗ki(x, y)f
m(y)δildΩ

where the traction t̂lmi is defined as

t̂lmi (y) = σij(ûlm
i (y), p̂lm(y))nj(y) (13)
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Rearranging the terms in (12) we have the transformation from the domain integral
to the boundary integral

∫
Ω

u∗ki(x, y)f
m(y)δildΩ = −

∫
S

t∗ki(x, y)û
lm
i (y)dSy

+
∫

S

u∗ki(x, y)t̂
lm
i (y)dSy + ûlm

i (x) (14)

Substitution of (14) and (9) into (4) leads to integral representation formula in
which only boundary integrals are present

ui(x) −
∫

S

t∗ki(x, y)ui(y)dSy +
∫

S

u∗ki(x, y)ti(y)dSy

=
N+A∑
m=1

αm
l

{
−
∫

S

t∗ki(x, y)û
lm
i (y)dSy +

∫
S

u∗ki(x, y)t̂
lm
i (y)dSy + ûlm

i (x)
}

(15)

3 Implementation of the meshless method

The proposed method will solve at each interior node six integral equations in
order to obtain the velocities u1, u2, stresses σ11, σ12, σ22 and pressure p. The
integral equation for velocity components is given by (15). Equations for stresses
and pressure will be described as follows.

3.1 Integral equation for stresses

Stresses are obtained from

σkh = −pδkh + µ

(
∂uk

∂xh
+
∂uh

∂xk

)
(16)

The value of derivatives ∂uk/∂xh are obtained by differentiating (15) in respect
to xh, where xh is the component of x.

∂uk(x)

∂xh
=

∫
S

∂t∗ki(x, y)

∂xh
ui(y)dSy −

∫
S

∂u∗
ki(x, y)

∂xh
σij(y)nj(y)dSy

+

Nr+A∑
m=1

αm
l

{
−
∫

S

∂t∗ki(x, y)

∂xh
ûlm

i (y)dSy +

∫
S

∂u∗
ki(x, y)

∂xh
t̂lm
i (y)dSy +

∂ûlm
k (x)

∂xh

}

(17)
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Substituting (17) into (16) yields equation for σkh(x)

σkh

µ
= − p

µ
δkh +

∫
S

[
∂t∗ki(x, y)
∂xh

+
∂t∗hi(x, y)
∂xk

]
ui(y)dSy

−
∫

S

[
∂u∗ki(x, y)
∂xh

+
∂u∗hi(x, y)

∂xk

]
σij(y)nj(y)dSy

+
Nr+A∑
m=1

αm
l

{
−
∫

S

[
∂t∗ki(x, y)
∂xh

+
∂t∗hi(x, y)
∂xk

]
ûlm

i (y)dSy

+
∫

S

[
∂u∗ki(x, y)
∂xh

+
∂u∗hi(x, y)

∂xk

]
t̂lmi (y)dSy +

[
∂ûlm

k (x)
∂xh

+
∂ûlm

h (x)
∂xk

]}
(18)

3.2 Integral equation for pressure

The pressure corresponding to the velocity field for the Newtonian fluid can be
obtained in the integral form as (for more details, see Ladyzhenskaya [6])

p(x) = −
∫

S

qk(x, y)tj(y)dSy − 2µ
∫

S

∂qk(x, y)
∂xj

uk(y)nj(y)dSy

+
∫

Ω

qk(x, y)gk(y)dy (19)

With the approximation (8), the domain integral in (19) becomes

∫
Ω

qk(x, y)gk(y)dΩ =
N+A∑
m=1

αm
l

∫
Ω

qk(x, y)fm(x)δkldΩ (20)

Applying the Green’s identity to the new flow field (ûlm
i (x), p̂lm(x)) produces

p̂lm(x) = −
∫

S

qk(x, y)t̂lmk (y)dSy − 2µ
∫

S

∂qk(x, y)
∂xj

ûlm
k (y)nj(y)dSy

+
∫

Ω

qk(x, y)fm(y)δkldy (21)

Substitution of (21) and (20) into (19) leads to

p(x) = −
∫

S

qk(x, y)tk(y)dSy − 2µ

∫
S

∂qk(x, y)

∂xj
uk(y)nj(y)dSy

+

N+A∑
m=1

αm
l

(
p̂lm(x) +

∫
S

qk(x, y)t̂lm
k (y)dSy + 2µ

∫
S

∂qk(x, y)

∂xj
ûlm

k (y)nj(y)dSy

)

(22)
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4 Interpolation for the unknown fields

In order to perform the integration over the local boundaries of the circular sub-
domains, values of the velocities and stresses must be known on the circles. The
unknown velocity at any node on the local boundary is approximated by N neigh-
boring nodes by the following formula:

u(x) =
N∑

i=1

f(x, xi).ai (23)

Equation (23) is applied on all N neighboring nodes xj , j = 1, . . . , N and the
following system of equations is formed

u(xj) =
N∑

i=1

f(xj , xi).ai (24)

Equation (24) can be written in the matrix form as

u0 = F0a (25)

where u0 = [u(x1), u(x2), . . . , u(xN )]T ; F0 = [fji] = [f(xj , xi)], j = 1, 2,
. . . , N ; i = 1, 2, . . . , N . The unknown coefficients a are determined by a =
F−1

0 u0. Hence, the potential at point x can be written as

u(x) = F (x)F−1
0 u0 (26)

where F (x) = [f(x, x1), f(x, x2), . . . , f(x, xN )].
In the similar way, the stresses are approximated by the following formula

σij(x) = F (x)F−1
0 σ0

ij (27)

where σ0
ij = [σij(x1), σij(x2), . . . , σij(xN )]T .

5 Solution procedures

The RBIEM generates one circular sub-domain around each of the nodes located
inside the domain or on the boundary (see [7]). The eight nodes on the boundary
of the sub-domains are introduced as nodes where the velocities and stresses are
evaluated using interpolation by employing the surrounding nodes located at cen-
ters of surrounding sub-domains. For each sub-domain, the same set of nodes was
used for interpolation of the field variables over the circular local boundaries; this
means the same set was used for each of the eight nodes on the circle, and for the
DRM approximation. This significantly simplifies the search for the neighbouring
nodes and saves CPU time. The set of nodes was found by prescribing the required
number of nodes in the interpolation/approximation and then the code defined the
set by selecting the required number of the nearest nodes to node i.
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Figure 1: The circular sub-domains distributed in the problem domain.
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Figure 2: Lid-driven cavity configuration with boundary conditions.

6 Numerical examples

The laminar incompressible flow in a square cavity whose upper boundary is mov-
ing at a constant velocity (see Figure 2) is considered for benchmarking the numer-
ical approach. The velocity is given as zero on all the walls except at the top,
where the horizontal velocity equals to unity. The problem is solved by the pro-
posed method for two different Reynolds number Re = 100, Re = 400. The
results obtained by the proposed method are compared with the benchmark values
obtained by Ghia et al. [1], using a finite difference multigrid numerical scheme
with very fine mesh. For the both cases, the radius of the sub-domain for boundary
nodes is set as small as 5.10-3 to reduce the error due to the extrapolation by reduc-
ing the distance between the nodes on the external part of the local circular bound-
ary. The radius of the sub-domain for internal nodes is the distance to the nearest
node. All simulations are done on a PC Pentium IV 3.0 Ghz, 1.0 Gb of RAM. The
resulting sparse matrix produced by the method is solved by SPARSKIT solver.
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Figure 3: Velocity field at Re = 100
obtained with 313 nodes in
the domain.
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Figure 4: Velocity field at Re = 400
obtained with 5951 nodes
in the domain.

−0.5 −0.25 0 0.25 0.5
−0.3

−0.2

−0.1

0

0.1

0.2

X

U
y

Ghia
Meshless

Figure 5: Horizontal fluid velocity
distribution at the verti-
cal center line, at Re =
100 with 313 nodes in the
domain.
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Figure 6: Vertical fluid velocity dis-
tribution at the horizon-
tal center line, at Re =
100 with 313 nodes in the
domain.

The domain for the case Re = 100 has 313 nodes. Velocities of the flow for
the case Re = 100 are depicted in figure 3. Figures 5 and 6 show horizontal fluid
velocity distribution at the vertical center line and vertical fluid velocity distribu-
tion at the horizontal center line, respectively. They are in good agreement with
the results obtained by Ghia et al. [1].

As pointed out by Power and Mingo [8], at the flow regions near the corners,
the flow has singularities associated with infinite values of the velocity and sur-
face traction. One way to circumvent these problems is to use a high density of
boundary elements in the vicinity of the singular points. In the case Re = 400
there are 5951 nodes in the domain. Figure 4 shows the obtained velocity filed
which is in good agreement with previous method. Figures 7 and 8 show a com-
parison between velocities obtained by proposed approach and those reported by
Ghia et al. [1] on the horizontal and vertical center-line fluid. Good agreement of
the results has been archived.
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Figure 7: Horizontal fluid velocity
distribution at the vertical
center line, at Re = 400
with 5951 nodes in the
domain.
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Figure 8: Vertical fluid velocity dis-
tribution at the horizontal
center line, at Re = 400
with 5951 nodes in the
domain.

7 Conclusions

A meshless method based on the integral equations and combined with the sub-
domain approach is applied to the Navier-Stokes equation. Six equations in 2D
are solved at each node, where two equations are for velocities, one equation is
for pressure and the remaining equations are used for solving stresses. Radial
basis function interpolation is applied in order to obtain the values of the field
variable and normal derivatives on the boundary of the circular sub-domains. The
inversion of the matrix is calculated only once for every nodal point. Every nodal
point is connected with few surrounding nodal points, leading to a banded sys-
tem. The DRM has been applied to convert the domain integrals into integrals
over the boundary of the sub-domains. The numerical results produced by mesh-
less method for two cases Re = 100 and Re = 400 are in good agreement with
the results obtained by Ghia et al. showing that proposed method can be used for
solving the Navier-Stokes equations.
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