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Abstract 

The conventional boundary element method (BEM) requires a domain integral in 
heat conduction analysis with heat generation or an initial temperature 
distribution. In this paper it is shown that the three-dimensional heat conduction 
problem can be solved effectively using the triple-reciprocity boundary element 
method without internal cells. In this method, the distributions of heat generation 
and initial temperature are interpolated using integral equations and time-
dependent fundamental solutions are used. A new computer program was 
developed and applied to solving several problems.  
Keywords: boundary element method, heat conduction, meshless method. 

1 Introduction 

The unsteady heat conduction problem without arbitrary heat generation and a 
nonuniform initial temperature distribution can be easily solved, without using 
internal cells, by the conventional boundary element method (BEM). For special 
cases, unsteady heat conduction problems with constant heat generation and 
uniform initial temperature distribution can solved by the standard BEM without 
the need for internal cells. When an analysis of heat conduction under arbitrary 
heat generation or a non-uniform initial temperature distribution within the 
domain is carried out by the BEM, a domain integral is generally necessary [1, 
2]. However, by including the domain integral, the merit of BEM, that the 
preparation of data is simple, is lost. Thus, several other methods have been 
considered. Nowak and Neves proposed a multiple-reciprocity method [3]. 
Tanaka et al. have proposed a dual-reciprocity BEM for transient heat 
conduction problems, and V. Sladek and J. Sladek proposed a local boundary 
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integral equation for unsteady heat conduction problems. However, these 
methods do not employ a time-dependent fundamental solution, which gives an 
accurate result.  
     Ochiai proposed the triple-reciprocity BEM or improved multi-reciprocity 
BEM for steady heat conduction, steady thermal stress and elastoplastic 
problems [4–6]. The triple-reciprocity BEM for two-dimensional heat 
conduction and thermal stress analysis for an unsteady state has also been 
proposed [7, 8]. In this paper the triple-reciprocity BEM is used for three-
dimensional unsteady heat conduction problems. In this method, heat generation 
and the initial temperature distributions are interpolated using the boundary 
integral equations. The triple-reciprocity method, which does not require internal 
cells, uses a time-dependent solution.  

2 Theory 

2.1 Unsteady heat conduction 

In unsteady heat conduction problems with heat generation ),(1 tqW S , a 
temperature T is obtained by solving  

t
TWT

S
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∂
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,                                         (1) 

where κ , λ  and t  are the thermal diffusivity, heat conductivity and time, 
respectively. Denoting an arbitrary time and the initial temperature by τ and 

)0,(0 qT S , respectively, the boundary integral equation for the temperature in the 
case of unsteady heat conduction problems is expressed by [1, 2] 
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where c=0.5 on the smooth boundary and c=1 in the domain. Γ and Ω represent 
the boundary and the domain, respectively, p and q are respectively an 
observation point and a loading point, and r  is the distance between p and q. 
The notations p and q are written as P and Q on the boundary, respectively. In 
the case of three-dimensional problems, the time-dependent fundamental 
solution ),,,(*

1 τtqpT  in Eq. (2) for the unsteady temperature analysis problem 
and its normal derivative are given by [1, 2] 
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where 
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     As shown in Eq. (2), when there is an arbitrary initial temperature or heat 
generation distribution, a domain integral becomes necessary.  

2.2 Interpolation  
An interpolation method for a distribution of heat generation ),(1 τqW S  is shown 
using the boundary integral equations to avoid the use of internal cells. The 
polyharmonic function ),(][

1 qpT f  for the steady state is given by   

( ) !224
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     In reference [15], the polyharmonic function of body distribution is used. 
However, the corresponding functions for the unsteady three-dimensional case 
are very difficult to obtain. In this paper, the polyharmonic functions of the 
surface distribution are used．Figure 1 shows the shape of polyharmonic 
functions; the biharmonic function ]2[T  is not smooth at 0=r . In the three-
dimensional case, smooth interpolation cannot be achieved using only the 
biharmonic function ]2[T . To achieve smooth interpolation, the polyharmonic 
function with surface  distribution AT ]2[  is introduced. A polyharmonic function 
with surface distribution AfT ][ , as shown in Fig. 2, is defined as [14] 

∫ ∫=
π π

φθθ
2

0 0
2][][ )sin( ddATT fAf .                              (7) 

AfT ][  can be easily obtained using the relationships θcos2222 ARARr −+=  
and θθdARdr sin= , as shown in Fig. 2. This function is written using r instead 
of R, similarly to Eqs. (3) and (6), although the function in Eq. (7) is a function 
of R. The newly defined function AfT ][  can be explicitly written as 
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     The following equations can be used for the three-dimensional interpolation 
[9]:  
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M  is the number of internal points for interpolation. Assuming the spatial 
distribution of 2 ( , )sW q τ to be governed by Eq. (11) with point sources, it is 

known that 2 ( , )sW q τ will be divergent at these source points as the particular 
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solution  [1]
3
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=
∑ . Nevertheless, we can evaluate 2 ( , )sW q τ  on 

the boundary. The term SW2  of Eq. (10) corresponds to the sum of the curvatures 
2

1
2 / xW S ∂∂ , 2

1
2 / yW S ∂∂ and 2

1
2 / zW S ∂∂ . The term PAW3  is the unknown strength 

of a Dirac function. From Eqs. (10) and (11), the following equation can be 
obtained.  
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Figure 1: Polyharmonic functions. 

 
 

Figure 2: Notation for polyharmonic 
function with surface 
distribution. 

     This equation corresponds to equation for the deformation of an idealized thin 
plate with M point loads. The deformation ),(1 τqW S  is given, but the force of 

the point load ),(3 τqW PA  is unknown. ),(3 τqW PA  is obtained inversely from the 

deformation ),(1 τqW S  of the fictitious thin plate. SW2  corresponds to the 

moment of the thin plate. The moment SW2  on the boundary is assumed to be 0, 
which is the same as that in a natural spline. This indicates that the thin plate is 
simply supported. Moreover, the distribution of the initial temperature can be 
interpolated as follows. 
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     On the other hand, the polyharmonic function ),,,(* τtqpTf  in the unsteady 

heat conduction problem and ),,,(* τtqpTfA  are defined by  

),,,(),,,( **
1

2 ττ tqpTtqpT ff =∇ +                            (15) 
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     Using Green’s theorem twice, and Eqs. (10)-(16), Eq. (2) becomes  
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     Using Green’s second identity and Eqs. (10) and (11), we obtain for SW1  and 
SW2  [7–9]  
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2.3 Unsteady polyharmonic function  

The three-dimensional unsteady polyharmonic function ),,,(* τtqPTf  in Eq. (17) 
is determined as  
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The polyharmonic function ),,,(* τtqPTf  in the unsteady state and its normal 
derivative are explicitly given by  
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where )(,γ  is an incomplete gamma function of the first kind and 

ii xrr ∂∂= /, ．Using Eqs. (7) and (17), the polyharmonic function with a surface 
distribution is obtained as follows: 
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     Numerical solutions are obtained using the interpolation functions for time 
and space. If a constant time interpolation and time step ( 1−− kk tt ) are used, the 

time integral can be treated analytically. The time integrals for ),,,(* τtqPTf  and 

nTf ∂∂ /*  from ft  to Ft  are given as follows: 
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     )(,Γ  is an incomplete gamma function of the second kind．The time integral 
of Eq. (25) can be obtained as follows: 
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     For the sake of conciseness, the terms involving 2u  in Eq. (34) are omitted.  
     If there are no arbitrary heat generation or initial temperature distributions, 
internal points are not necessary. Also, for the special case of the formulation of 
an unsteady state from a steady state, internal points are not necessary. If the heat 
generation and initial temperature distributions are governed by Laplace equation 
instead of Eqs. (10)-(14), Eq. (17) becomes  
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3 Numerical examples 

To verify the efficiency of this method, an unsteady temperature distribution in a 
sphere is obtained. The initial temperature of the sphere is CT °=100 , and the 
temperature on the surface suddenly becomes 0° at time 0=t . It is assumed 
that the thermal diffusivity is =κ 16 mm2s-1 and the radius of the sphere is 

10=b  mm. Figure 3 shows the boundary elements. In this example，Eq. (36) is 
used; therefore, internal points are not necessary. Figure 4 shows the temperature 
change．The solid lines in Fig.4 show the exact solutions, which are given by  
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Figure 3: Boundary elements of 
spherical region. 

Figure 4: Temperature distributions 
in sphere. 

     The next numerical example is a cubic region with length 10=L mm with 
heat generation. Using internal points as shown in Fig. 5，it is assumed that the 
thermal diffusivity κ  is 16 mm2s-1．The number of boundary elements and 
internal points are 600 and 729=M , respectively. The surface temperature is 
0℃ and the initial temperature is 0℃. Step heating is assumed. The heat 
generation is given by  

L
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L
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     Using a Laplace transformation and a finite sine transformation, an exact 
solution is obtained as follows:  

)]exp(1[sinsinsin),,,( 0 Et
L
z

L
y

L
x

E
WtzyxT −−=

πππ
λ
κ               (39) 

136  Mesh Reduction Methods

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 



2

23
L

E κπ
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2
0 /10/ mmKW =λ  is assumed. Figure 6 shows the comparison between this 

method and exact solution given by Eq. (39) at t =0.05, 0.1, 0.2, 0.4 and 1 s.  
 

           
        (a) Boundary elements                    (b) Internal points 

Figure 5: Cubic region. 

       

Figure 6: Temperature distri-
butions in cube 

)5( == zy . 

Figure 7: Temperature distri-
butions in cube 

)5( == zy . 

     For the special case of the formulation of an unsteady state from a steady 
state, internal points are not necessary. Temperature of cubic region is obtained 
using boundary elements as shown in Fig. 5. In this calculation, internal points 
are not necessary. The thermal diffusivity κ  is 16 mm2s-1．The temperatures at 
x=0 and x=10 are 0℃ and 100 =T ℃, respectively. The other surfaces are 
adiabatic. Initial temperature is given by  

L
xTxT 0)0,( = .                                                   (41) 
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     The temperature at x=10 suddenly becomes 00 =T ℃ at time st 0= . The 
unsteady temperature distribution is obtained by Eq. (36). Using a Laplace 
transformation and a finite sine transformation, the exact solution is obtained as 
follows:  

)exp(sin)cos(2),( 2
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     Figure 7 shows the comparison between this method and the exact solution 
given by Eq. (42) at t =0.01, 0.05, 0.1,0.2, 0.4 and 1 s. 

4 Conclusion  

It has been shown that it is possible to express the distributions of heat 
generation and initial temperature for the three-dimensional case using only the 
fundamental solution of lower order by the triple-reciprocity boundary element 
method. It has also been shown that highly accurate unsteady heat conduction 
analysis using the boundary integral is only possible using the polyharmonic 
function and the surface-distributed polyharmonic function, even in the case of 
arbitrary distributions of heat generation and initial temperature. Therefore, by 
adding only the data of the values at internal points and on the boundary for the 
distributions of heat generation and initial temperature, the analysis of three-
dimensional heat conduction for the unsteady state with heat generation and 
initial temperature distributions has become possible. A reduction of the 
dimensionality of the problem has been effectively achieved. 
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