
Extending the local radial basis function
collocation methods for solving semi-linear
partial differential equations

G. Gutierrez1, O. R. Baquero1, J. M. Valencia1 & W. F. Florez2

1 Universidad Popular del Cesar, Valledupar, Colombia
2 Universidad Pontificia Bolivariana, Medellín, Colombia

Abstract

This work addresses local radial basis function (RBF) collocation methods for
solving a major class of non-linear boundary value problems, i.e., Lu = f(x, u)
being f a non-linear function of u. This class of problems has been largely ana-
lyzed in the BEM community.

To our knowledge, few works are reported where the local RBF collocation
methods (LRBFCM) based on the generalized Hermite RBF interpolation (dou-
ble collocation) have been extended successfully to solve semi-linear problems
even when extending to more complex nonlinear cases are not reported yet. The
studied schemes are based on a strong-form approach of the PDE and an overlap-
ping multi-domain procedure combining with standard iterative schemes. At each
sub-domain, a locally meshless approximation solution by a standard or Hermite
RBF expansion can be constructed. We studied also the performance respect to the
shape parameter of RBF. It is confirmed that the local RBF double collocation can
improve greatly the accuracy order. Some 2D benchmark problems with mixed
boundary conditions showing the accuracy, convergence property and implemen-
tation issues of LRBFCM are presented.
Keywords: RBF interpolation, double collocation, Domain decomposition meth-
ods, semi-linear equation, fully Newton method, Picard iteration.

1 Introduction

The PDE Lu = f(x, u) where x represents the vector of position, u being the
field variable and f the only nonlinearity arising from the source term, is encoun-
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tered in heat conduction, chemical rate models, gas dynamics, among other prac-
tical applications [1–5]. Its numerical solution in steady-state or unsteady-state
with advantaged boundary element methods (BEM) is well established. In the
context of dual-reciprocity boundary element method (DRM) [3], it is introduced
in turn the normal gradient information at the boundary to improve the needed
RBF interpolations (Hermite type) providing more accuracy for permitting addi-
tional degree of freedom (DOF) for the same number of interior knots. Extend-
ing from this approach in the method of fundamental solution (MFS) is carried
out elsewhere [5], improvements of accuracy were also observed when solving
aforementioned equations. In unsteady-state solution cases, an efficient formula-
tion that combining DRM and Laplace transforms (LTDRM) can be performed [2].
There a clear advantage of the LTDRM over time-stepping methods was demon-
strated through the numerical results, especially if the solution at a particular time
is sought. It has been shown that the success relies mainly on the linearization of
the nonlinear source term by a first-order Taylor series expansion over u, namely
a second-order Picard iteration.

Meshless methods have been proposed and achieved remarkable progress over
the past years [6, 7]. They were born with the objective of eliminating part of the
inherent difficulties that rely on complex, connected meshes or elements. Accord-
ing to the formulation procedures, they can be mainly classify in global and local
weak-forms and global and local strong-forms [8]. For instance, the global element-
free Galerkin (EFG) method and the very popular meshless local Petrov-Galerkin
(MLPG) method are including under the first group which were developed in 1994
and 1998, respectively [8]. These two methods are widely employed in different
complex areas of applications.

On another group of meshless methods, there exists RBF-based methods that
have enjoyed tremendous research for solving PDEs. Kansa [9] was the first to
use directly globally-supported RBF interpolant, particularly multiquadrics like
basis functions, in a point collocation technique to approximate the strong-form
of PDEs. Following this idea, Fasshauer [10] suggests to change to generalized
Hermite-RBF interpolation. These two techniques are known as unsymmetric and
symmetric methods, respectively. The last turns out a collocation matrix that is
dense, symmetric and non-singular, whereas Kansa’s collocation matrix is dense,
non-symmetric and the non-singularity is not guaranteed [11]. This group of mesh-
less methods possesses the following advantages: straight forward process for
obtaining discrete equations by directly use the PDE (strong-form), simple imple-
mentation, computationally efficient (no numerical integration is required) and
truly meshless (by using mainly a meshless interpolation/approximation function).
It should be to point out that in [11], the author finds well-suited to solve vari-
able coefficient elliptic and time-dependent PDEs through unsymmetric method.
But applying Fasshauer’s method to solve a variable coefficient problem finds it
very cumbersome. Moreover, he says to be not clear to deal with nonlinear prob-
lems using the symmetric method. For a treatment of time-dependent PDEs and
one unsteady non-linear heat conduction equation based on the symmetric method
together with an implicit time-stepping algorithm looks at [12, 13].
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In addition, it has been shown that global RBF collocation methods using some
infinitely smooth RBFs are highly accurate and converge exponentially [14]. Even
shortcomings are also known as the trade-off principle between the accuracy gained
by increasing the c-shape parameter of RBF or the system size and the stability
lost due to large matrix condition number created [14], and poor performance
accounts for derivative boundary condition [15–17] and non-smooth boundary
conditions [18]. To circumvent the ill-conditioning problem and to improve the
solution accuracy, several techniques have been explored as matrix preconditioner,
multizone methods, variable RBF shape parameter and overlapping and nonover-
lapping domain decomposition methods (DDM) [19–22].

A very promising based-LRBFCM have been proposed in [23–27]. They can
be seen like a novel implementation of overlapping sub-domain RBF collocation
DDM in the limiting case of a very large number of sub-domains. Standard DDM
deal with an iterative procedure due to transmission of information for yielding the
numerical solution; herein the multi-domain formulation generates a discretized
equation for each sub-domain (based on a localized RBF interpolation function)
and together with a point collocation technique then arises a global, sparse and
well-conditioned collocation matrix as result from an easy assembling process.
The major difference between the local RBF methods and the previously pre-
sented global ones is the set of unknowns obtained from steady-state governing
equations; for the former the unknowns represent the discrete values of the field
variable (by defining approximations in term of shape functions) whereas for the
latter the unknowns represent the coefficients of a linear combination of basis
functions. This is a key step that makes local methods much more flexibility than
global ones [25,26]. For instance, LRBFCM have been more effective than global
RBF collocation approaches when solving 2D convection-diffusion problems with
moderate-to-high Peclet number [28, 29]. Various strategies have been proposed
for determining the number of sub-domain nodes, mostly based on counting the
number of them into a specified regular-shaped form of the sub-domains, i.e., cir-
cle, rectangles, etc.; or the number of nodes n is fixed and selecting them according
to certain criterion, i.e., nearest searching, four quadrant, among other more elabo-
rates [8,26,30,31]. This mild connectivity can be accomplished in a preprocessing
stage in the cases that collocation points does not alter its distribution. From here
on we will call computational molecules with their star points instead of the so-
called sub-domains.

A recent approach was proposed in [32], it aimed to exploit the combination
between LRBFCM and the classical control volume (CV) method. There a bound-
ary value problem is solved for every cell and then constructing the cell shape
functions from which the evaluation of the flux across the cell faces is obtained. By
this way, they were able to improve the performance of the CV method. So far we
believe that this approach has been applied successfully to 3D linear convention-
diffusion problems for predicting high Péclec number models.

LRBFCM are essentially one truly meshless version that can be applied to
large problems reasonably inexpensive and without numerical conditioning issues
like 3D problems and Navier-Stokes equations in fluid dynamics, see very recent
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papers in [29, 33, 34]. The major goal of this paper is to present new numerical
results of LRBFCM for semi-linear problems with further findings compared to
few prior implementations [26, 35].

2 PDE model

We consider a PDE model in which the nonlinearities arises from source terms.
For simplicity, it has been considered of the form

Lu = ∆u = f(x, u), in Ω (1)

the boundary conditions are assumed to be of the form

u = u, on Γ1 (2)

q =
∂u

∂n
= q, on Γ2 (3)

where u is the unknown field variable, ∆ is the Laplacian operator, q is the flux, n
being the unit outward normal, u and q are given functions and Γ = Γ1 ∪Γ2 is the
boundary of the whole problem domain Ω. A fully Newton scheme can be applied
straightforward due to the use of the RBF shape functions and discrete values of
the field variable.

An alternative numerical treatment is as follow. Let us linearize the nonlinear
source term by a first-order Taylor series expansion as

f(x, u) =: f1(x, ũ) + f2(x, ũ)u (4)

where

f1(x, ũ) = f(x, ũ) − ũ
∂f

∂u

∣∣∣∣
ũ

, f2(x, ũ) =
∂f

∂u

∣∣∣∣
ũ

(5)

and thus eqn. (1) can be rewritten for a suitable iterative scheme of which arises
the Picard iterations

Lũu = ∆u− f2(x, ũ)u = f1(x, ũ), in Ω (6)

where ũ is the previously iterated solution and f to be a differentiable function.
Note that the discretization of eqn. (6) and its corresponding global system of
equations need to be recalculated at each iteration because of new linearized vari-
able coefficient operator depends on the solution iterates.

3 Meshless shape functions and implementations

Let us assume that at each collocation point (node) xj ∈ θh = {xj} Nj=1 is
selected (in some way) a subset Sj ⊂ θh, named the computational molecule of xj
such that Sj is the set of surrounding points (centers) of xj (the star point) which
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includes n << N distinct grid-points of which m ≤ n could be used in a dou-
ble collocation way. It assumes that xj ∈ Sj , and it is the first element. At every
molecule Sj , a locally meshless approximate solution ûj is sought by a general-
ized Hermite RBF interpolation function augmented with a constant polynomial
term [11]:

ûj(x) =
n∑
i=1

λiφ (‖x− ξi‖) +
m∑
k=1

αkγ
ξφ (‖x− ξk‖) + χ (7)

which interpolates both functional values u(x) on all points and derivative infor-
mation γu(x) at the double collocation points. Note that this interpolant guaran-
tees reproduction of constant functions. If m = 0 (the simplest RBF interpolant),
it interpolates functional values only, and if m �= 0 then a RBF double colloca-
tion is possible to exploit, i.e., in these locations two interpolation conditions are
simultaneously satisfied. The latter can be a way to increase the accuracy, without
increasing the size of the molecule, whether there is information about the deriva-
tives of the unknown function at some data points. The coefficients of the basis
functions have to be determined.

By evaluating the different interpolation conditions into eqn. (7) at the corre-
sponding supporting points n of the molecule for leading to n + m + 1 linear
equations, that is, n equations by function values, m equations by derivative val-
ues and add one standard homogeneous constraint by the polynomial term. The
block matrix form of these equations is:∣∣∣∣∣∣∣

φ (‖x− ξ‖) γξφ (‖x− ξ‖) e

γφ (‖x− ξ‖) γγξφ (‖x− ξ‖) γe

eT γeT 0

∣∣∣∣∣∣∣︸ ︷︷ ︸
A

∣∣∣∣∣∣∣
λ

α

χ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
u

γu

0

∣∣∣∣∣∣∣ (8)

where ei = 1 and the local interpolation matrix A is symmetric, small and non-
singular [26]. As always, the centers ξ and nodes x physically coincide. Also, γφ
is equal to γξφ up to a possible difference in sign [12]. It is worth noting that the
interpolation matrix A is a constant matrix for a given star point xj . As such, it
shall change only if the distribution of collocation points or the derivative func-
tional are changed.

Combining eqn. (7) along with the linear system eqn. (8), it leads to that the
approximation function can be expressed in term of a linear combination of mesh-
less shape functions (called cardinal basis functions in interpolation terminol-
ogy) with discrete values of the field variable and their derivatives as the coef-
ficients [26]:

ûj(x) =
n∑
i=1

uiΦi(x) +
m∑
k=1

γukΦ̃k(x) (9)

like shape functions possess the Kronecker delta property [26] then it is easy to
implement the essential (Dirichlet) boundary conditions, e.g., not molecules are
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sought at star points belonging to not-derivative boundary. For a linear differential
operator L with variable coefficients, it can be easily discretized by applying to
shape functions, i.e.

Lûj(x) =
n∑
i=1

uiLΦi(x) +
m∑
k=1

γukLΦ̃k(x) (10)

The derivative functional γu(x) in eqn. (9) can be assumed in several ways for the
construction of approximations. Further details on constructing shape functions
look at the reference [28]. Herein three options have been proposed
1. When m = 0, i.e., it is not assumed a derivative functional as known, so

there is not a special treatment for the derivative boundary conditions. This
is the simplest formulation that we refer as the local RBF single collocation
approach [24].

2. When m �= 0 for molecules that intersect the global derivative boundary since
the derivative functional is assumed to come from γu(x) = ∂u

∂n = q. In thesem
intersecting points within a molecule, their normal derivatives q are included as
additional unknowns. At derivative star points, the PDE and the normal deriva-
tive boundary condition are satisfied simultaneously with the advantage does
not need more meshing work outside the domain; it increases the number of
collocation equations needed to close the system. This formulation gives rise
to the local RBF double boundary collocation approach [8].

3. When m �= 0 in all molecules since the derivative information is assumed to
come from the source term, i.e., γu(x) = Lu(x) = f(x). This formulation
gives rise to the local RBF PDE collocation approach [26]. In our tests, m < n
in interior molecules and m ≤ n in molecules with the star point along of the
derivative boundary were assumed, reported also in [28]. The former condition
rejects explicitly the derivative information at the star point [26].

Applications of whichever above approaches for constructing the approximation
functions and the simple point collocation technique, using eqns (1), (2) and (3),
lead to a set of nonlinear algebraic equations which can express in the standard
valued-vector residual form:

ϕ (U) = 0 (11)

where U is the vector of nodal unknowns at all collocation points.
Alternatively, we use eqns (6), (2) and (3) to lead a set of linear algebraic equa-

tions at each iteration which can express in the standard matrix-vector notation:

KU (k) = F (12)

where K is the collocation matrix, U (k) is the vector of unknowns in the kth
Picard iteration and the vector F collects the source terms in both the interior
and on the boundary. Notice that at each iteration, K and F must be updated. The
iteration process is continued until the convergence criteria are satisfied. It is worth
noting that the unknown vector U is given term of (u, q)T into eqns (11) and (12)
when using the above second option.
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4 Numerical evaluations

For eqn. (11) we use a Newton method with line-search, without attempting to opti-
mize, and the Jacobian matrix required by the general-purpose solver is supplied
analytically. For deciding the convergence of the solutions by Newton method, tol-
erances TolFun = 10−7 for residual function and TolX = 10−8 for incremental
correction of the solution vector have been used. For eqn. (12) we use a direct
solver in order to invert the linear system and

∥∥Uk − Uk−1
∥∥ / ∥∥Uk∥∥ < 10−4 for

convergence criterion. In both cases a data structure based on a sparse storage for-
mat is used which stores a list of coordinates of non-zero elements. To deal with
eqn. (8), it is used an appropriate direct solver in order to invert the small sym-
metric matrix A. Also the most popular RBF is used, namely φ(r) =

√
r2 + c2

(MQ-multiquadric) along with a constant shape parameter c2 given by end-user.
In our computations, uniformly distributed collocation points and five n = 5 and
nine nodes n = 9 in the molecules have been used. The relative total error norm at
the end iteration is taken to measure the accuracy of the numerical results.

For the sake of clarity, we point out the three RBF local methods and their leg-
ends that we will use throughout the section. The local single collocation method
to be refereed as meth1, the local RBF PDE collocation approach to be refereed
as meth2 and the local RBF double boundary collocation method to be refereed as
meth3. It is worth noting that meth2 is well suited when the problem has mixed
boundary conditions. The other approaches can be well applied to problems with
only Dirichlet and also mixed boundary conditions.

4.1 Analytic case

We consider a smooth solution problem in a square domain 1 × 1 given

∆u = exp (−2x)u3 in Ω (13)

u = g on Γ1 = {(x, y) | y = 0, 1, 0 ≤ x ≤ 1}
∂u

∂x
= h on Γ2 = {(x, y) | x = 0, 1, 0 < y < 1}

Exact solution of this problem is

u(x, y) = expx tanh
y√
2

(14)

where g and h functions are obtained from the exact solution.
The computations are performed on two uniform point distributions 21 × 21

(N = 441) and 41 × 41 (N = 1681) and different shape parameters (0.05 < c <
1). The solution is approximated using meth1 with n = 5, meth2 with n = 9 and
meth3 with n = 9. Figure 1 shows the discretization of the domain and the choice
of different molecule sizes used in meth1 and meth2.

Figure 2 displays the error norm of the local RBF collocation methods combin-
ing with Picard iterations for different c’s and two point distributions. In general,
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Figure 1: Computational molecules including five and nine supporting points
assumed on derivative boundary and internal star points.
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Figure 2: Convergence of the relative error with c2. Solid line: meth1, dotted line:
meth2 and dash-dot line: meth3. On the left uses 21×21 and on the right
uses 41 × 41.

one can see that the error decreases as c increases. Also the error looks to be
decreasing as point density increases. Furthermore, we can see also that the accu-
racy greatly improved using both Hermite collocation approaches (double collo-
cation near and at the derivative boundary and throughout domain), i.e., meth3
and meth2. Accordingly they have the line slope values larger than meth1, i.e.,
recovering a higher order of accuracy. We observe that beyond to a certain shape
parameter presents unavoidable instabilities in the local and/or global systems. To
this respect, we felt that meth1 with a five molecule size is more attractive com-
pared with meth2 and meth3 because less sensitive to c and very much stable
and fast computationally. In the present study, at meth1 passing from five to nine
molecule size, the computational effort increases more than two times and the error
norm does not decrease generally in accordingly (see also [33, 34]). Comparing
the meth1 with five molecule size and meth2 with nine molecule size, the former
is faster than the latter about 10 times because a less elaborate assembling matrix
and less terms in the approximations. Though the latter can be more accurate than
the former over 100 times into a wide range of c’s. After many tests, on the full
range of shape parameter tested, always converged solutions were achieved.
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Figure 3: Convergence of the relative error with c2. Solid line: meth1 and 11× 11,
dashed line: meth1 and 13 × 13, dotted line: meth2 and 11 × 11 and
dash-dot line: meth2 and 13 × 13.

4.2 Kinetic rate problem in a square

Simplified kinetic rate problem in steady-state can be analyzed by means the forced
diffusion equation

∆u = Ψ2uη (15)

which governs kinetic and diffusional phenomena in a homogeneous
medium where Ψ and η are known parameters. Our computations are compared
with an exact solution from [4] which is given for u = 0.4352 at point (0, 0). There
the problem domain is the unit square centered at (0, 0), only Dirichlet boundary
condition u = 1 is prescribed on whole domain, using Ψ = 5 and η = 2. The com-
putations are performed on two uniform point distributions 11×11 (N = 121) and
13×13 (N = 169) and different parameters (0.05 < c < 2). The other parameters
are similar to previous problem.

Figure 3 shows the accuracy of the solution as a function of MQ shape param-
eter, different point distributions and two local RBF methods combining with
Newton method. One can observe also that both methods can achieve an accu-
racy improvement with higher values of c and denser collocation points. It can be
seen that solution error at meth1 decreases very smooth as c increases until to be
nearly constant. On the other hand, meth2 (double collocation) is more sensitive to
c owing to the error decreases as c increases but now one observes a certain recov-
ery of spectral convergence for a range of c’s. Always converged solutions were
found with less than five iterations. With this problem, we confirm the applicability
of local RBF collocation methods to deal with the simplest nonlinear problems.

5 Conclusions

Here we show that meshless local RBF collocation methods (LRBFCM) are well
suited to solve the simplest nonlinear boundary value problems. Particularly we
were able to incorporate standard iterative procedures based on fully Newton and
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second order Picard methods in all local methods. Though the performance of both
procedures was not compared in this work. However, the combination with New-
ton method can require optimization for reducing the computational cost. In addi-
tion, the molecule size can also affect adversely the efficiency due to higher sizes
require many computations, e.i., roughlyO(Nn3), see [29]. New details about the
performance of the schemes varying the constant shape parameter are shown as
such can affect strongly the convergence order and accuracy itself even though it
seems dependent on the problems. Furthermore, in the full range of shape param-
eter tested, always converged solutions were found with few iterations. We are
to sure that local RBF methods are quite stables and efficients compared to the
counterpart global ones. By the simplicity of these methods, we hope that they
can follow up being applied to a wide variety of important applications in the near
future.
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