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Abstract 

The paper deals with the development of the meshless computational techniques 
based on the Local Integral Equations and analytical integrations. The 
development is illustrated on 2-d potential problems in functionally graded 
media. The MLS-approximation is used for simulation of spatial variations of the 
potential field. Efficient differentiation is proposed for calculation of derivatives 
of shape functions. The accuracy and efficiency are studied on simple example 
providing the exact solution for the benchmark solution.   
Keywords: MLS-approximation, local integral equations, differentiation of shape 
functions, accuracy, efficiency. 

1 Introduction 

The advantages of mesh-free formulations in comparison with the mesh-based 
ones have been appreciated extensively in solution of problems for separable 
media. In two last decades, many mesh-free formulations are becoming popular 
also in numerical analyses for solids because of their high adaptivity and a low 
cost preparation of input data. A variety of meshless approximations have been 
implemented in discretizations of various formulations for numerical solution of 
boundary value problems. The application of the weak formulation on local sub-
domains enables development of truly mesh-free formulations in contrast to the 
weak formulations considered in the global sense, where the background mesh is 
still required. Nevertheless, there is a criticism as regards the time requirements 
for evaluation of the shape functions in various meshless approximations. This is 
so owing to rather complicated form of the shape functions, hence certain 
algorithm is to be repeated for evaluation of them at each integration point.  
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     In this paper, we shall consider Moving Least Squares (MLS) approximations 
[1] in potential problems. Then, the physical field values are expressed in terms 
of certain nodal unknowns which are different from the nodal values of the 
approximated field, in general. The nodes playing the role in approximation of 
the potential field at certain point x are selected by weight functions associated 
to nodes. For each integration point x , it is necessary to find if the weight 
function is different from zero at x . Certain time savings can be achieved by 
using MLS-CAN formulation [2], where the Central Approximation Node is 
taken as the nearest node to the point x  and the nodes influencing the 
approximation at the CAN are employed as the nodes contributing to the 
approximation at the point x  too. Recall that the nodes associated with each 
CAN are specified in advance and saved in memory.   
     In this paper, we develop a weak formulation for solution of potential 
problems based on the local integral equations and several kinds of 
approximations for derivatives of the potential field represented by the MLS-
approximation. Performing the integrations analytically, the amount of 
evaluations of the shape functions is drastically reduced, since these are 
constrained to nodal points alone. Thus, the computational effort resembles that 
in the finite difference method. The relationship with the strong formulation 
based on the collocation of the partial differential equation at nodal points is 
discussed too. Consideration of the material non-homogeneity does not give rice 
to any complication as compared with the homogeneous case. The accuracy and 
computational efficiency is studied in numerical experiments.    

2 Local integral equation formulation for solution of b.v.p. 

The potential problem (e.g. stationary heat conduction) in anisotropic and 
continuously non-homogeneous media is governed by the following partial 
differential equation with variable coefficients [3] 

( )( ) ( ) ( ), ,
u Qik k i

λ = −x x x ,   in  Ω                                    (1) 

where ( )u x is the unknown potential field, ( )Q x  is the known body source 
density, and ( )ikλ x  describe the spatial variation of the material coefficients 
related to the flux vector ( )iq x  as 

,( ) ( ) ( )i ik kq uλ= −x x x                                         (2) 

Physically, Eq. (2) is known as the Fourier law for heat conduction or also as the 
first Fick’s law in diffusion problems. 
     The prescribed boundary conditions (b.c.) can be classified as  

(i) Dirichlet b.c.:  ( ) ( )u u=x x   at  D∈∂Ωx  

(ii) Neumann b.c.: ( ) ( ) ( )i in q q=x x x   at  N∈∂Ωx  
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(iii) Robin b.c.:  ( ) ( ) ( ) 0i iu n qα β+ =x x x   at  R∈∂Ωx  , ( , Rα β ∈ ) 

where D N R∂Ω = ∂Ω ∪ ∂Ω ∪∂Ω , ( )in x is the unit outward normal vector to the 
boundary, and an over bar denotes the prescribed quantities.  
     Recall that Eq. (1) is the differential form (strong form) of the of the energy 
balance and can be deduced from its integral form  

( ) ( ) ( ) ( ) ( )i in q d Q d
c c

Γ = Ω∫ ∫

∂Ω Ω

x x x x x ,                            (3) 

holding for all arbitrary but small material domains cΩ ⊂ Ω . In view of Eq. (2), 
we can rewrite Eq. (3) as 

,( ) ( ) ( ) ( ) ( ) ( )i ik kn u d Q d
c c

λ Γ = − Ω∫ ∫

∂Ω Ω

x x x x x x ,                    (4) 

which is the local weak form of the governing equations. Note that Eq. (4) is a 
physically admissible constraint that can be used as a coupling equation in the 
computation of unknown degrees of freedom of the discretized problem. Recall 
that the local integral equations (4) are non-singular, since there are no singular 
fundamental solutions involved in contrast to the singular integral equations 
employed in the boundary integral equation method. Moreover, the integration of 
unknown (approximated) field variables is constraint to the boundary of local 
sub-domains even in the case of non-homogeneous media. This can be 
effectively utilized by decreasing the amount of integration points as compared 
with the formulations involving domain integrals. As regards the computational 
time, it is independent on the fact if the medium is homogeneous or non-
homogeneous.  

3 Moving Least Squares approximation (MLS) 

3.1 Standard MLS approximation 

The primary field variable (potential field) is assumed to be approximated at a 
vicinity of the point x as  

1

( ) ( ) ( )
m

u p cµ µ
µ=

≈ ∑x x x ,                                            (5) 

where 1{ ( ), ... , ( )}mp px x is a complete monomial basis and ( )cµ x are expansion 
coefficients which can be obtained by minimizing a weighted functional 

1

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
tN

a a a a a

a

J w p c u p c uµ µ µ µ
=

= − −      ∑x x x x x x .          (6) 
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     Hence, one can get the expansion coefficients and the approximation (5) 
becomes 

1

ˆ( ) ( )
tN

a a

a

u uφ
=

≈ ∑x x ,     1

, 1

( ) ( )A ( )B ( )
m

a apα αγ γ
α γ

φ −

=

= ∑x x x x ,           (7) 

where                                             

1

A ( ) ( ) ( ) ( )
tN

a a a

a

w p pαβ α β
=

= ∑x x x x ,      B ( ) ( ) ( )a a aw pα α=x x x .      (8) 

     The weight function for each node ax is chosen as a function with a compact 
support given by the radius ar . In this paper, we shall consider Gaussian weight 
functions: 

2 2 2( / ) ( / ) ( / ) for

for

/ 1 , 0
( )

0 ,

a a a a a ad c r c r c a a

a a

e e e d raw

d r

− − −− − ≤ ≤
=

≥

         


x  

tN  is the total number of nodes, but the actual number of nodes contributing to 

the approximation (7) is less than tN , since ( ) 0aφ =x , if ( ) 0aw =x . 
Nevertheless, all the tN  nodes are involved into the evaluation algorithm for the 
shape functions. Recall that the shape functions do not satisfy the Kronecker 

delta property ( )a b
abφ δ≠x , in general, and the expansion coefficients ˆau are 

fictitious nodal values.  These nodal unknowns are discrete degrees of freedom 
in the discretized formulation.  

3.2 MLS-CAN concept 

Besides the standard MLS-approximation, we shall consider also the Central 

Approximation Node (CAN) concept. Let qx  be the CAN for the approximation 
at a point x . Then, the amount of nodes involved into the approximation at x  is 
reduced a-priori from tN  to qN , where qN  is the number of nodes supporting 

the approximation at the CAN qx , i.e. the amount of nodes in the set 

{ }
1

; ( ) 0 tNa a q
a

q w
=

∀ >= x x�M . Then, instead of the approximation given by 

Eq. (7), we shall use  

( , ) ( , )

1

ˆ( ) ( )
qN

n q n qu u α α

α
φ

=

= ∑x x ,                                   (9) 
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where ( , )n q α is the global number of the α -th local node from q�M . In this 

paper, we shall specify the CAN qx as the nearest node to the approximation 
point x .       

3.3 Approximation of potential field derivatives  

The gradients of the potential field can be approximated as gradients of the 
approximated potential by 

, ,
1

ˆ( ) ( )
tN

a a
j j

a

u uφ
=

≈ ∑x x ,           ( , ) ( , )
, ,

1

ˆ( ) ( )
qN

n q n q
j ju u α α

α
φ

=

≈ ∑x x  .            (10) 

Note that calculation of gradients of the shape functions is rather complex 
procedure according to the formula  

1
, ,

, 1

( ) ( )A ( )B ( )
m

a a
j jpα αγ γ

α γ

φ −

=

= +∑x x x x  

1 1 1
, ,

, 1 , 1

( ) A ( )B ( ) A ( )A ( )A ( )B ( )
m m

a a
j jpα αγ γ αβ βµ µγ γ

α γ β µ

− − −

= =

+ −
 
 
 

∑ ∑x x x x x x x .   (11) 

The higher order derivatives can be obtained in a similar way  

( , ) ( , )
, ... , ...

1

ˆ( ) ( )
qN

n q n q
j k j ku u α α

α
φ

=

= ∑x x                                   (12) 

with increasing complexity of the evaluation. For instance, the second order 
derivatives are required in meshless implementation of the strong formulation 
given by the governing PDE (1). According to experience we know that the 
accuracy of higher order derivatives fails.  
     Beside the standard differentiation (referred as sdif), we can express the 
higher order derivatives of the potential field in terms of the first order 
derivatives of the shape functions ( , )

, ( )c a c
k

ca
kF φ= x and the nodal values 

( , )ˆn cu α using the recurrent formula   

( ) ( 1) ( , )( , )
, ..., ... ,

1
( ) ( ) ( )

cN
c ac n c a c

ijij k k
a

u uα α φ−

=
= ∑x x x                     (13) 

where the superscript ( )α shows the order of the derivative. Thus,  

( , )
,

1 1
( , )

ˆ( )
c vN N

n v bca vb
ij j i

a b
v n c a

cu F F u
= =

=

= ∑ ∑x ,                              (14) 
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( , )
,

1 1 1
( , ) ( , )

ˆ( )
c v wN N N

n w dca vb wd
ijk k j i

a b d
v n c a w n v b

cu F F F u
= = =

= =

= ∑ ∑ ∑x , etc.            (15) 

     Note that Eqs. (14) and (15) can be rewritten as  

,
1

( , )ˆ( )
c

ca
ij ij

a

M
c m c au F u

=

= ∑x ,                                       (16) 

,
1 1

( , )

( , ) ( , )

1

ˆ ˆ( )

v cc

vb ca
ijk ij ijk

b a
v n c a

N M K
c ca m v b k c a

k
a

u F u F uF
= =

=
=

= =∑ ∑∑x ,                  (17) 

where the global numbers ( , )m c a as well as cM and ca
ijF can be obtained from 

comparison of Eqs. (16) and (14). Similarly from (17) and (15), one can find 
( , )k c a , cK and ca

ijkF . These approaches will be referred as modified 
differentiation (mdif). 

4 Discretization of governing equations and boundary 
conditions 

4.1 Strong formulation 

Collocating the prescribed boundary conditions at boundary nodes and the 
governing equations  

( ) ( ) ( ) ( ) ( ), , ,
c c c c cu u Qik ki ik i kλ λ+ = −x x x x x ,                 (18) 

at interior nodal points cx with substituting the approximations for the potential 
field and their gradients discussed in Sect. 3, we obtain the system of algebraic 
equations for the nodal unknowns. The numerical results achieved by this 
approach will be referred as CPDE (Collocation of PDE). 

4.2 Weak formulation 

Strictly speaking we present a mixed formulation, since the boundary conditions 
are considered in strong form. Surrounding each interior node cx with a sub-
domain cΩ and substituting an approximation for gradients of potential field at 
each integration point, one can complete the system of algebraic equations for 
computation of nodal unknowns ˆau by equations 

1
,ˆ ( ) ( ) ( ) ( ) ( ) ( )

tN
a

a

a
i ik ku n d Q d

c c
λ φ

=

Γ = − Ω∫ ∫

∂Ω Ω

∑ x x x x x x .              (19) 
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     In Eq. (19), we have used the standard MLS approximation, but the MLS-
CAN approximation is applicable too. In general, the integrations are to be 
performed numerically with evaluating the gradients of the shape functions at 
each integration point.  
     In order to reduce the amount of points at which the shape function gradients 
are to be evaluated, we try to accomplish the integration in a closed form. For 
this purpose, we shall assume the circular sub-domains centred at nodes cx . 
Furthermore, the radius of the circle or  is taken sufficiently small, in order to 
justify the Taylor series expansion of the material coefficients as well as 
gradients of the shape functions within the sub-domain. If the material 
coefficients are prescribed by analytical functions, there is no basic problem to 
calculate their derivatives at nodal points. Expecting failure of accuracy of higher 
order derivatives of the shape functions, the size of the radius of sub-domains 
should guarantee fast convergence of the Taylor series expansion. For the sake of 
simplicity, we shall consider isotropic medium ij ijλ δ λ= . Assuming the Taylor 

series expansions up to 6th and 4th orders for ( )λ x and , ( )iφ x , respectively, and 

neglecting the terms 8( )oO r , one obtains 

   
2 4

, , , , ,2

1 1
( ) ( ) ( ) ( )

8 24 8c

c c c co o
i i i imm immss i

o

r r
n u d u

r
λ λ λ λ

π ∂Ω

Γ = + + +
 
  
 

∫ x x x x  

   ( )
2 4

, , , ,
1

2
8 24 2 8

ipc c c c co o
ip ip jj ip ipjj ssjj

r r δ
λ δ λ λ δ λ λ+ + + + + +
  
  

 
 

 
6 2 4

, , , , , ,
1 3 1

( ) 3
256 6 36 8 24 4 2

ipc c c c c co o o
ipjjss ssjjll ip i ps ijj ps ips

r r r
u

δ
λ λ λ δ λ δ λ++ +

    + + +         
x  

  , ,

6 2 4

, , ,
1

4

1 1
( )

256 4 3 8 24
c c

ip kf ip kf jj ip kf
c c c co o o
ijjll ps ispjj ips

r r r
u δ δ λ δ λ δ δλ δ λ λ+ ++
    + + +    

     
x  

  ( ), , , ,

6
( )72 24

6 24 192
9c c c c

ipjj kf ipkf jjll ip kf ipkf
o u

r
λ δ λ λ δ δ =+

× ×





+ + x  

   
2

( ) ( )
1

o

Q d
crπ

= − Ω∫

Ω

x x                                                                                    (20) 

     In the derivation of this equation, we have utilized the following integrals 
2

0

1

c
i j i j ij

o
n n d n n d

r

π
ω πδ

∂Ω

Γ = =∫ ∫ ,       
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 ( )
2

40
ijmpi j m p ij mp im jp ip jmn n n n d Y

π π
ω δ δ δ δ δ δ= + +∫ ≡ , 

( )
2

240
ij mpts im jpts ip jmts it jmps is jmpti j m p t sn n n n n n d Y Y Y Y Y

π π
ω δ δ δ δ δ=∫ + + + + ≡  

                                   ijmptsY≡  

 (
2

1920
ij mptsrl im jptsrl ip jmtsrl it jmpsrli j m p t s r ln n n n n n n n d Y Y Y Y

π π
ω δ δ δ δ=∫ + + + +    

                                    )is jmptrl ir jmptsl il jmptsrY Y Yδ δ δ+ + +  

and the integrals of the product of odd number of normal vectors are vanishing. 
Note that in the discretized form, the weak formulation given by Eq. (20) 
converges to the strong formulation (18) in the limit 0or → . Moreover, the 
strong formulation corresponds to the lowest expansion terms in the weak 
formulation when the material coefficients and the shape functions gradients are 
expanded into Taylor series. Hence, one can expect better accuracy by the weak 
formulation than by the CPDE approach especially for problems in considerably 
graded materials.    

5 Numerical experiments 

Let us consider the square domain L L× with prescribed temperatures on the 
bottom and top of domain as ou and Lu , respectively, and thermally insulated 
lateral sides. The material medium is assumed to be isotropic with exponentially 
graded heat conduction coefficient as 2( ) exp( / )o n x Lλ λ δ=x with 2n =  and 

1δ = . The benchmark solution is given by the exact solution of this 1-d problem 

( )2 /
2( ) 1

1
n x LL o

o n
u u

u x u e
e

δ
δ

−
−

−
= + −

−
. 

     Before investigating the accuracy and efficiency of various meshless 
implementations of LIE and/or PDE, we discuss shortly the accuracy of 
approximations for derivatives of the potential field.  
     It can be seen from Fig. 1 that the approximation of the first order derivative 
is acceptable within the whole domain, while the accuracy for the second 
derivatives fails near the boundary. This can be explained by non-symmetric 
distribution of nodes w.r.t. the evaluation point in boundary layers. The sdif 
approach fails completely even in the case of the third derivative, while the mdif 
approach works well at points far from the boundary.  
     Fig. 2(a) shows the accuracy of numerical results achieved by analytical 
integrations and using the sdif approach for approximation of shape function 
derivatives with the highest order either two (sfdo=2) or three (sfdo=3). The 
h parameter is the distance of two nearest nodes in uniform meshes, and the  
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Figure 1: Comparison of approximated derivatives of potential with exact 

values. 

radius of circular sub-domains was taken either independent on h  ( =0.01rsd ) or 
variable ( =0.01rsd h∗ ). One can see the negative influence of the third order 
derivative on accuracy. In the case of variable rsd, this influence is depressed 
because of minimization of the third order contribution with decreasing rsd as h  
is decreasing.  
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     In the case of LIE combined with the analytical integration, we have used 
various programming techniques for calculation of derivatives of shape functions 
within mdif approach. Although there was no influence on the accuracy, there 
was on the efficiency visible through the CPU times. When =0.01rsd h∗ , the 
accuracy is independent on the choice of the highest order of the shape function 
derivatives owing to vanishing contribution of higher order terms with 
decreasing the radius of sub-domain. On the other hand, the influence of the sfdo 
is visible when =0.01rsd . The best accuracy as well as the convergence rate is 
achieved for 3sfdo = . The less accurate results correspond to 4sfdo = because 
of worse approximations of the 4th order derivatives of shape functions.  
 

            

 
Figure 2: Convergence study for various techniques: (a) analyt. integration 

with sdif; (b) analyt. integration with either sdif or mdif;  (c) 
CPDE, LIE+numer. integration, LIE+analyt. integr. 

     Finally, from Fig. 2(c), one can see that the LIE approach combined with 
numerical integration yield the worst accuracy as well as the convergence rate in 
comparison with the CPDE and the LIE+analytical integration approaches. As 
regards the LIE+analytical integration approaches, the best accuracy is achieved 
by the ( 2)sdif sfdo+ = technique and comparable results are obtained by the 

( 3)mdif sfdo+ =  technique.  
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     The efficiency of various meshless computational techniques will be assessed 
by studying the CPU-times needed for creation of the system matrix ( mt ) and for 
complete solution ( ft ), where f m st t t= + and st is time needed for solution of 
the system of algebraic equations.  Fig. 3(a) is a confirmation of the expectation 
that the LIE approach with numerical integration is less effective than CPDE in 
creation of the system matrix. It can be seen that for nodal point distributions 
with low density mt is a substantial part of ft , while for high densities mt is a 

negligible part of  ft for CPDE in contrast to the LIE+num. integr. approach.  
 

     

     

Figure 3: Variations of the time ratio /m ft t with h parameter for various 
meshless computational techniques. 

     Fig. 3(b) shows the dependence of the time ratio /m ft t on h parameter for 
LIE+analyt. integr. combined with four programming variants for modified 
calculation of shape function derivatives. Recall that all the variants 

( )mdif α with the same sfdo  yield the same accuracy.  The cases with 
2sfdo = are not presented because of lower accuracy. It can be seen that the 
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most effective variants are (1) ( 3)mdif sfdo+ = and (4) ( 3)mdif sfdo+ = . In Fig. 
3(c), we compare the efficiency of various approaches based on LIE+analytical 
integration. We presented also the results for ( 3)sdif sfdo+ = and 

(4) ( 2)mdif sfdo+ = despite bad accuracy by these approaches. The approaches 
( 2)sdif sfdo+ = and (4) ( 3)mdif sfdo+ = exhibit almost the same efficiency as 

well as the accuracy. Fig. 3(d) shows a comparison of efficiencies achieved by 
various meshless computational techniques. 
 

 

Figure 4: Dependence of mt on the h parameter. 

     Finally, Fig. 4 shows the dependence of time needed for creation of the 
system matrix by various meshless computational techniques.   

6 Conclusions 

There was developed a meshless technique based on the LIE and analytical 
integration with effective computation of derivatives of shape functions. The 
efficiency in creation of the system matrix of discretized equations is comparable 
with the strong formulation based on the collocation of PDE at nodal points but 
the accuracy as well as the convergence rate is better in the proposed technique.   
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