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Abstract 

This paper presents a method for reconstruction of maximum shear stress and 
stress trajectories from discrete data on principal directions. The domain is 
divided into smaller subdomains where stress potentials are assumed to be linear 
holomorphic functions.  The functions obey continuity along element interfaces, 
which is used to form the first group of equations. The known data on principal 
directions are used in the second group of equations. Therefore, no stress 
magnitudes are involved in formulations, which eventually leads to a 
homogeneous system of linear algebraic equations.  In order to make the system 
inhomogeneous an extra equation is added. It represents mean value of 
maximum shear stress over the domain. The reconstructed maximum shear 
stress, therefore, includes an arbitrary positive multiplicative parameter. 
Keywords: photoelasticity, stress trajectories, holomorphic function. 

1 Introduction 

Numerical method presented in this paper aims to reconstruct maximum shear 
stresses from discrete data on principal directions. Several examples from 
photoelasticity [1, 2] are considered to verify effectiveness of the method.  
     In the past photoelasticity was widely used in mechanics of solids  [1, 2]. It is 
an optical method to determine stresses in plane models on the basis of 
birefringence, the property, observed in certain transparent material. The optical 
properties of such materials are modified with intensity of loading.  The normal 
incidence of light is resolved into two components, each one coinciding with a 
principal plane of stress. Placing photoelastic sample between polarizers whose 
axes are perpendicular, one can observe black fringes in the sample, these are 
referred to as isoclinics. Orientations of the two principal stresses are obtained by 
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rotating the polarizers from 0o to 90o, and drawing the isoclinics. The stress 
trajectory presents a curve the tangents to which coincide with the principal 
direction of one of the principal stresses, therefore the pattern of stress 
trajectories is further drawn by using the obtained set of discrete stress 
orientations. 
     The procedures for obtaining stress trajectories and determination of stresses 
from the photoelastic data, so called process of stress separation, are detailed in 
textbooks [1, 2]. They are based on relatively dense set of uniformly distributed 
data, which allows one to determine the stress field with high accuracy and even 
to consider this field as a continuous one. 
     In geophysics, the data on stress orientations in the earth’s crust can be 
obtained by different experimental methods (see the WSM project for detail [3]). 
However these data are significantly inhomogeneous and irregular. Moreover, 
the data are mostly related to the tectonic plate margins and large regions of the 
crust are not populated with the data at all. This structure of the data makes it 
impossible to directly transfer the methods used in photoelasticity to the problem 
of stress identification in the lithosphere. Therefore special approaches have 
recently been developed in [4–6]. These approaches make use of mathematical 
theory of plane elasticity [7], where the mean stress and deviatoric stress 
functions are described by means of two holomorphic functions, complex 
potentials. A method for reconstructing maximum shear stress field from discrete 
data on stress trajectories, using approximation of holomorphic functions across 
whole domain has firstly been applied in [4]. In this paper an example from 
photoelasticity for a beam under three point bending test is presented to verify 
the effectiveness of the proposed approach. It is further applied for geophysical 
data to study stresses in the Australian continent [4, 5]. In these papers single 
plane domains have been considered. The method has also been applied for a 
pair of adjacent elastic regions to study elastic stress field of Antarctica plate, 
where the most data are known on the continent boundaries [6]. Apart from data 
on stress orientations, the continuity of the stress vector across the margins of the 
plate has been used in this paper as an additional conditions imposed on the 
sought solutions. 
     The present paper presents a method where the domain is divided into smaller 
subdomains and approximation is performed within each subdomain with 
implied continuity of approximating functions across the subdomain boundaries. 
Similar method has recently been developed for harmonic problem of heat flux 
reconstruction from temperature data [8]. 
     The method is further verified with synthetic data, as well as with 
experimental data extracted from photoelasticity experiments. 

2 The method 

2.1 Equation of plane elasticity 

In 2D stress field, the plane symmetric stress tensor is given by its components 
σ11, σ12, σ22. The stress tensor can be described by means of the following stress 
functions [7]: 
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     Functions P and D represent the mean stress and the stress deviatoric 
respectively. The mean stress function is a real-valued function and the 
deviatoric stress is a complex valued function of complex conjugated variables 

iyxzyixz −=+= , . The functions P and D satisfy equations of equilibrium 
that can be expressed in the following complex form: 
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     The deviatoric stress function D can be written in the form: 
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     Here the modulus of function D presents the maximum in-plane shear 
stress D=maxτ  and )arg(D=α  can be expressed as follows: 

ϕπα 2−=                                              (4) 
where ϕ  is the principal direction. 
     For homogenous isotropic elastic medium following equation is satisfied: 

0=∆P                                                               (5) 
     The stress functions P and D according to the Kolosov–Muskhelishvili 
formulae [7] can be expressed in terms the form: 

)()('),(,)()(),( zzzzzDzzzzP Ψ+Φ=Φ+Φ=                       (6) 
where the complex potentials )(zΦ  and )(zΨ are holomorphic functions.  

2.2 Problem description 

Let Ω  be a simply connected elastic domain. It is assumed that principal 
directions ϕj are known as a discrete set of points zj (j=1…N), located within the 
domain. The task is to reconstruct the stress field from principal directions, in 
particular, the stress deviator, presented by the function D. 
     The data on principal directions have no restrictions on the type of 
distribution. In examples considered in section 3 synthetic data are uniformly 
distributed while photoelastic data are not uniform. 
     It has been shown in [4] that the reconstruction of stress trajectories is unique, 
while the solution of τmax contains one multiplicative positive constant, and 
therefore the solution for P contains an extra additive real parameter caused by 
integration of (3). We further concentrate on the reconstruction of the stress 
deviator only and therefore do not pay much attention to the additive free 
parameter.  
     The domain is divided into n smaller subdomains of an arbitrary shape. In 
every subdomain, the holomorphic functions entering in the second equation (6) 
are approximated by linear holomorphic functions are specified as follows: 
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a, b, c and d are unknown complex constants, therefore 8 unknown real constants  
can be associated with every single subdomain.  Principal directions are 
associated with the stress deviators in subdomains, i.e. the arguments of the 
functions )()('),( )()()( zzzzzD mmm Ψ+Φ= , therefore the arguments of 
complex potentials cannot be specified separately. 

2.2.1 Discretization 
The discretization of the domain and introduction of collocation points on its 
interfaces are performed with respect to the examples considered in section 3. 
Rectangular elements are used for the rectangular domain and polar elements are 
used for circular ring domain (Figure 1). 
 

 

Figure 1: Rectangular element type (left) and polar element type (right). 

2.2.2 Equations of continuity, condition equations and non-homogenous 
equation 

In is assumed that stresses are continuous in Ω. Thus, the approximating 
holomorphic functions, representing )(' zΦ  and )(zΨ  obey continuity across 
interfaces at collocation points. For the k-th collocation point, lying on the 
interface between the elements numbered m and m+1, the equations of 
continuity for )(' zΦ  and )(zΨ are as follows: 
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     As mentioned above these two equations do not include information about the 
principal directions and therefore the following expression for the stress 
deviators is used to impose data:  
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     The maximum shear stress is a real valued function; therefore the following 
equations are valid in every subdomain: 
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     This equation is satisfied for every known location jz . 
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     A non-homogenous equation has to be added to the system to address the fact 
that the field of τmax has one multiplicative arbitrary parameter. It is further 
assumed that the average value of maxτ  over the whole region as unity, which 
leads to the following equation: 
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     The total system consists of equations given by (8), (10) and (11). 
     By extracting the real and imaginary parts of equations (8), (10) and (11) the 
real system of linear algebraic equations (SLAE) can be obtained and rewritten 
in a matrix form: 

bAx =                                                            (12) 
where mxnR∈A  , mR∈b  and m>n. x is the vector of the unknown real 
coefficients, of the length n. The vector x is composed of real and imaginary 
parts of unknown complex coefficients. Vector b is known exactly, while, A the 
matrix of the SLAE depends on data quality, type and size of element. The 
matrix A is not a square matrix, the system is over-determined and therefore the 
left-hand side Ax does not exactly equal to b and thus the system is inconsistent. 
However an approximate solution, x*, can be found by the least squares method 
[9] that minimises the residual to bring the error below the given level: 

ε≤− 2b*Ax                                               (13) 

where 2...  stands for the 2L  norm. 
     If the system is well-posed and not large, then the inversion of the matrix 
does not meet difficulties and the approximate solution takes the form: 

bAAAx* TT 1)( −=                                            (14) 
     The condition number (CN) is used in the numerical examples to control well-
posedness of the SLAE. 

3 Results 

The method was first tested for a simple synthetic example in order to verify the 
accuracy. Other tests include data compiled from photoelastic experiments for 
rectangular and polar domains. 

3.1 Results for synthetic example 

Let potentials 'Φ  and Ψ  be known in Ω. Given these, one can calculate the 
stress deviator and obtain maximum shear stress and stress trajectories. Synthetic 
data extracted from the given potentials are referred to as the ideal data.  
     The potentials are chosen as low degree polynomials:  
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     Computational domain is the square 11 <<− x  and 11 <<− y . One singular 
point is found inside of this area, which refers zero maximum shear stress.  
     Within this area 36 uniformly distributed data on principal directions and 64 
rectangular elements with 2 collocation points in every interface have been used 
(Figure 2). The system consisting of 933 equations and 512 unknowns produced 
CN=422 and residual equal to 5.7. 
 

 

Figure 2: Computational domain showing subdomains, data on principal 
directions and collocation points. 

     The results of reconstruction are compared with the characteristics of the ideal 
stress field given by (15); Figure 3 presents contour map of the reconstructed and 
ideal maximum shear stress stresses; Figure 4 shows the profiles of maximum 
shear stresses over several cross sections. Ideal and reconstructed stress 
trajectory fields are plotted in Figure 5, which illustrates to illustrate that the 
singular point has been identified with high accuracy. 
 

 

Figure 3: Ideal (left) and reconstructed (right) maximum shear stress  

3.2 Results for gas turbine blade under thermal shock 

A photoelastic experiment on stress determination in a gas turbine blade caused 
by of thermal shock [2] is used to collect 300 data subjected to errors, Figure 6.  
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Figure 4: Profiles of reconstructed (dots) and ideal (triangles) maximum 
shear stress. 

 
 

   

Figure 5: Stress trajectories, ideal (left) and reconstructed (right). 
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Figure 6: Manually picked data and discretization. 

 

 
Figure 7: Experimental result for isochromatics [2] (left) and reconstructed 

isochromatics (right). 

The errors are due to approximation used in [2] for plotting of stress trajectories 
and to manual pick up. The data have been picked from stress trajectories image, 
using MATLAB software.  
     Computational domain consists of 400 elements with two collocation points 
on each interface, Figure 6. The SLAE consisted of 6381 equations and 3200 
unknowns. The condition number of this system was 104 and the residual was 
288. 
     Isochromatics obtained from photoelasticity and the reconstructed 
isochromatics are shown in Figure 7 where A,B,C,D are singular (isotropic) 
points. Experimental and reconstructed stress trajectories are shown in Figure 8. 
It is remarkable that in this example three singular points (A, C, D) are inside the 
domain and one B is on its boundary. All of them have been recovered from 
principal directions data. 
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Figure 8: Stress trajectories from experiment [2] (left) and reconstructed 
stress trajectories (right). 

3.3 Results for Bakelite ring under concentrated diametral loads 

The data from a photoelastic experiment for a ring subjected to the action of two 
concentrated forces have been used. In this example almost all boundary is free 
of stresses except of two small loading areas. The stress trajectories image was 
used to obtain 300 data on principal direction, Figure 9. The stress pattern for 
compressed circular ring is shown in Figure 10 (left). 
     Computational domain has been discretized into 320 polar elements, with 
following distribution: 8 elements placed along radius and 40 elements placed 
along the circumference with 2 collocation points on each interface. The 
discretization is shown in Figure 9 (right). The system consisted of 5007 
equations and 2560 unknowns. Condition number is 2465 and residual is 176.  
 

 

Figure 9: Stress trajectories and isoclinics from [1] (left) and discretization 
(right). 

     Reconstructed maximum shear stress is shown in Figure 10 (right). 
Comparison between photoelasticity isoclinics and reconstructed ones is shown 
in Figure 11. 
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Figure 10: Fringe pattern from [1] (left) and reconstructed fringe pattern 
(right).  

 

 

Figure 11: Comparison of isoclinics, photoelasticity (left) and reconstruction 
(right). 

4 Conclusions 

An approach capable to reconstruct maximum shear stress field from discrete 
data of principal directions have been proposed. Although the approach is 
somewhat similar to FEM it does not require consideration of plane elastic 
boundary value problems and uses approximation of holomorphic functions in 
subdomains. 
     The effectiveness of the proposed approach has been confirmed by 
satisfactory results of reconstruction as synthetic as well as real photoelastic data 
including identification of internal and boundary singular points. 
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