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Abstract 

The problem considered in this paper deals with reconstruction of plane stress 
tensors in domains with multiple interfaces representing the boundaries of 
subdomains. No boundary stresses or displacements are imposed; instead the 

stress vector across the interfaces is also accepted. Solutions in every subdomain 
are sought by assuming linear approximations for the complex potentials with 
unknown coefficients. These are found by solving a minimisation problem. An 
application to the geophysical problem of stress identification in tectonic plates 
is considered to illustrate effectiveness of the proposed numerical approach.  
Keywords: stress orientations, 2D stress tensor, complex potentials, plate 
tectonics. 

1 Introduction 

The problem of stress reconstruction from discrete data on stress orientation has 
been addressed in [1, 2] for a single domain and in [3–4] for two subdomains. In 
all these cases the domains have been associated with either tectonic plates or 
with certain regions of the earth’s crust and real data on stress orientations 
supplied by the World Stress Map Project [5] have been used. The present study 
is aimed at the further development of the previously reported method for the 
case when the entire domain consists of several plane elastic subdomains whose 
deformation properties may be, in general, different.  
     This study is also aimed at the development of algorithms capable of dealing 
with the data widely used in geodynamics, namely, experimentally obtained 
stress orientations around the globe and geographical coordinates of the tectonic 
plate margins [6].  
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discrete data on stress orientations are used for problem setting. Continuity of the 
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     The paper is structured as follows. Typical data accepted in this study are 
described in section 2 where also the outcomes of the developed algorithms are 
presented. Section 3 presents mathematical formulation of the problem and its 
numerical implementation is described in section 4. Results of computations for 
a particular plane domain are discussed in section 5. 

2 Data  

Data on stress orientations have been extracted from the WSM database which 
current 2008 release contains 21,750 stress data records, [5]. Only data of A-B 
quality [7] are used further on, this assumes stress orientations are recorded with 
the following errors:  ±10°–15° (A-quality) and within ±15°–20° (B-quality). 
     Data on plate boundaries [6] contains 52 entries. Each plate is presented by an 
ordered set of boundary points (in geographical coordinates) that constitutes a 
closed curve traversed in the counterclockwise direction.  The last point 
coincides with the first point.  
     A fragment of the earth’s crust with the data is shown in Fig 1. The domain 
consists of 16 subdomains (presenting tectonic plates); short segments show 53 
orientations of major compressive principal stresses. It is evident that the data are 
highly irregular and not all subdomains contain data points.  
 

  

Figure 1: Domain consisting of 16 subdomains, 35 interfaces, 53 data on 
stress orientations. 

     Several special procedures have been designed to deal with the boundary data 
with the aim of identification of the interfaces between the subdomains and 
placing equidistant collocation points on the interfaces. The number of interfaces 
depends on a particular subdomain pattern and cannot be calculated in a simple 
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way as it can be done for regular grids. For instance, 35 interfaces have been 
identified for the example presented in Fig 1. They represent common 
boundaries between adjacent subdomains and therefore there is one-to one 
correspondence between an interface number and a pair of subdomain numbers. 
     Linear interpolation has been applied through the discrete points representing 
an interface; therefore a set of nodes has been introduced for each interface that 
is further used for forming the entire set of collocation points. The number of 
nodes in every set is different, it is defined by the length, Lj, of the j-th interface 
(j=1…Nint) and the step, ∆, specified as a global input parameter; therefore the 
number of nodes on the j-th interface is defined as Nnodej=floor(Lj/∆). 
     After initial treatment of data the following output is obtained: 
a. The table of correspondence between interfaces and subdomains; it is a two 

row array with Nint columns, its first column shows the interface number and 
its second column contains the numbers of two adjacent subdomains whose 
boundaries form the interface shown in the first column; 

b. complex coordinates of the nodes on all interfaces ζk, ∑
=

=
int

1
1

N

j
jNnodek …  

c. principal directions, angles θm, at points zm, m=1…Ndata; and 
d. complex coordinates of the data points zm, m=1…Ndata sorted with respect to 

subdomains. 
     A special procedure for the identification of the subdomain to which a 
particular datum belongs to has been designed for data sorting. This procedure is 
further used for mapping of the calculated stress field. 

3 Formulation of the problem 

A plane elastic domain Ω composed by the union of plane subdomains Ωi 
(i=1…N) having, in general, different elastic moduli is considered (elastic 
moduli are not specified because no conditions regarding discontinuity of 
displacements across the interfaces are assumed in formulation). Principal 
directions are given at some points, belonging to some subdomains (not 
necessarily all subdomains are populated with data); the discrete set of given 
principal directions as assumed to be finite and contain Ndata points. It is accepted 
that the stress vector is continuous across the interfaces Γj between all adjacent 
subdomains (j=1…Nint). Given these conditions it is required to determine all 
possible stress states satisfying the given data on principal directions.  
     It should be noted that the problem formulated above is not a classical 
boundary value problem of plane elasticity. In contrast to classical formulations, 
the number of boundary conditions (two for each interface, presenting continuity 
of the stress vector) is insufficient, and therefore the solution is not unique and 
may contain arbitrary functions. In order to overcome such high 
indeterminedness one should seek possible solutions in a certain class of 
functions. A simple set of basis functions, namely piecewise linear holomorphic 
functions, is used further in numerical implementation. However this does not 
make the problem to be fully well posed, there still may be a finite number of 
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free parameters included in the solution. This is evident from the fact that no 
stress magnitudes are involved in the formulation, therefore at least two 
parameters remains undetermined in the total solution. They are (i) a 
multiplicative constant at the stress deviator; and  (ii) an additive constant to the 
mean hydrostatic stress. These can be selected randomly and affect neither 
principal directions nor equilibrium equations. It has been shown  [8] that up to 5 
free parameters can be included in the total solution for a simply connected 
elastic isotropic domain when it is being built from the know stress trajectory 
pattern. For a composite domain considered here no theoretical results regarding 
the number of free parameters are available. Therefore, the presence of free 
parameters will further be verified by assessing the rank of the matrix of the 
corresponding linear system of equations.  
     General solution for the stress tensor for a plane elastic domain subjected to 
boundary forces only has the form [9] 

( ) ( ) ( )

( ) ( ) ( )zzzizzD

zzzzP

Ψ+Φ′=σ+
σ−σ

≡

Φ+Φ=
σ+σ

≡

12
1122

2211

2
,

2
,

                             (1) 

     Here Φ(z) and Ψ (z) are complex potentials (holomorphic functions) to be 
determined from boundary conditions; harmonic function P and complex-valued 
function D represent mean hydrostatic stress and stress deviator respectively, 
they are functions of stress components σij; z.=x1+ix2 is a complex coordinate, 
over-bar stands for complex conjugation.  
     The complex conjugated stress vector N(ζ)–iT(ζ) (where N(ζ) and T(ζ) are 
normal and shear components respectively) on an arbitrary interface Γj is 
determined as follows [9] 

( ) ( ) ( ) ( ) int1,, NjD
d
dPiTN j …=Γ∈ζζ
ζ
ζ

+ζ=ζ−ζ                         (2) 

where P(ζ ) and D(ζ ) are the boundary values of the stress function obtained by 
limiting transition of the field variable, z, to a boundary point, ζ. These values 
can suffer jumps when the point crosses interfaces, however, the stress vector is 
assumed to be continuous across every interface, which leads to the following 
boundary condition in terms of complex potentials 

( ) ( ) ( ) int1,,0Re2 Nj
d
d

d
d

j …=Γ∈ζ=ζΨ
ζ
ζ

+ζΦ′
ζ
ζ

ζ+ζΦ                (3) 

where <…> denoted the jump of the quantity across the j-th interface. 
     The second set of conditions expresses the fact that the maximum shear 
stress, τmax=|D|, is a real valued function, that allows one to write 

( ) ( )( )[ ] datammmm
mi Nmzzzze …1,,0Im 2 =Ω∈=Ψ+Φ′θ                    (4) 

     It is taken into account here that arg(D)=π-2θ, where θ is principal direction 
(the angle between the major principal stress and the real axis) at an arbitrary 
point. 
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4 Numerical approach 

Complex potential are further sought as piecewise holomorphic linear functions 
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where )(zHi  are linear in Ωi  and vanish outside 
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     Here 2,1,0,)( =lc i
l are complex constants while )(ia are real.  

     It follows from (1), (5),(6) that the stress functions assume the form 
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     Although expressions (7) are simple they are general enough to address the 
presence of the singular (isotropic) points of two types known from 
photoelasticity [10]. The type of isotropic points is distinguished in accordance 
with the asymptotics near the roots of the stress deviator function [11].  
     There are seven unknown real coefficients for every subdomain, which are 
further considered as the coefficients in an ordered row as follows  

( ) Nicccccca iiiiiiii …1,Im,Re,Im,Re,Im,Re, )(
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     These form the vector of unknowns C as a transpose of the augment of rows 
C(i) 

( ))()2()1( ,,, NT CCCC …=                                       (9) 

     The first set of equations is obtained by satisfying the continuity condition (3) 
at collocation points, ζk as follows 
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where n  is the number of the interface between the k-th and j-th subdomains, 
calculated in accordance with the correspondence table mentioned in section 2; 
and the vectors V(k) and E are defined as follows 
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     The vector E has been introduced to add an extra equation expressing the fact 
that the coefficients a(i),  i=1…N are not independent, which is a consequence of 
the field data type that does not include magnitudes of stresses in formulation. 
     The right-hand side corresponding the first set of equation has the form  

( )Tλ= ,0,,0,0 …ConR                                           (12) 

where the coefficient λ can be chosen arbitrary, in particular, set to zero. 
     The second set of equations addresses the field data and employs conditions 
(4), which lead to the following matrix 

( ) ( )TmmTdataN 0,,Im,,0,,,, )()()()2()1( ……… VWJWWWMdata ==           (13) 

where the vectors V(m) and J are as follows 
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     The latter vector has been introduced into the system in order to make it 
inhomogeneous and acknowledge the fact that only the normalised maximum 
shear stress can be determined, i.e. one multiplicative arbitrary positive constant 
remains unknown. 
     The total system is obtained by the union of (10)–(14) as follows 
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     The system is overdetermined it has 2Nint +Ndata+2 equations and 7N 
unknowns. Therefore its approximate solution is found by the least squares 
method (consistency is cheeked by calculating the rank of the matrix). 
     As soon as the coefficients ck are found the solutions for each subdomains are 
determined by the stress functions in (7). 

5 Model example 

This section presents an example of stress field reconstruction in a plane 
quadratic domain consisting of 9 subdomains as shown in Fig 2.  The number of 
interfaces identified for this configuration is 18. The length of interfaces varies 
between 0.1 and 1.32 with the average value of 0.54 making the total length of 
all interfaces of 9.77. The number of collocation points introduced on the 
interfaces is 105, they are shown in Fig. 2 by circles. The number of data on 
principal stresses is 116, the data has been taken from the WSMP [5] from the 
geographical domain between longitudes –95o to –35o and latitudes –20o to 30o; 
the only quality A-B has been selected.  Two subdomains contain no data, and 4 
subdomains have 1-2 data. The SLAE has 329 equations imposed on 63 
unknowns. 
     The results of calculations of the stress field are presented in Figs. 3–5. Fig. 3 
shown the map of normalised maximum shear stress, i.e. the function F(z) in the 
expression τmax(z)=µF(z), where  µ >0 is an arbitrary positive constant. This 
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function reaches minimum at z*=-0.303-0.648i inside the white area, and this 
minimum is associated with the isotropic point where F(z*)=0. Fig. 4 presents 
the map of the mean hydrostatic stress in the scaled form, i.e. the function H(z) 
in expression P(z)=µH(z) +ν, where  ν >0 is an arbitrary constant. The field of 
stress trajectories is shown in Fig. 5, from which the presence of the isotropic 
point is evident.   
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Figure 2: Computational domain and data; the boundaries of subdomains are 
shown by solid lines; circles show collocation points on the 
interfaces; short segments represent data on principal stress 
orientations.  
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Figure 3: The map of maximum shear stress. 
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Figure 4: The map of mean hydrostatic stress. 
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Figure 5: Stress trajectory field. 

     Although the fields of τmax(z) and P(z) are discontinuous on the interfaces this 
is not clearly seen in Figs 3–4 because of interpolation used for plotting these 
maps. Stress trajectories also look smooth in the figure, however, the tangents to 
them presenting. the stress orientations suffer certain jump at the interfaces; at 
some collocation points the jump is up to 10o. 

6 Conclusion 

A numerical approach for the reconstruction of plane stress tensors in a 
composite domain with multiple interfaces is suggested in this paper. It provides 

42  Mesh Reduction Methods

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 49,
 www.witpress.com, ISSN 1743-355X (on-line) 



essential tool for stress states identification by discrete data on principal 
directions and assumes neither boundary stresses nor displacements. The 
example considered in section 5 demonstrates that the proposed approach is 
capable for dealing with for geophysical applications with real data and complex 
geometries. 
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