
Parametric analysis of ACA-based solver for
BEM 3D

T. Grytsenko & A. Peratta
Wessex Institute of Technology, UK

Abstract

The standard Boundary Element Method (BEM) with single domain yields the
dense linear system of equation (LSE). This LSE cannot be solved efficiently by
existing iterative solvers such as CG, GMRES, TFQMR, etc. Moreover, such
LSE cannot be stored in advanced formats such as Compressed Sparse Row or
Modified Sparse Row and therefore cannot be compressed in order to economise
memory consumption. Methods such as the fast multipole method and panel
clustering gain their efficiency from approximating the kernel function. This
paper implements and studies the parameters and performance of the Adaptive
Cross Approximation (ACA) algorithm for reducing the rank of off-diagonal
blocks in the three dimensional BEM. The ACA algorithm is purely algebraic
and does not need to deal with the kernel. The algorithm uses a hierarchical
matrix storage approach where the matrix is split into many blocks. The
off-diagonal blocks of this matrix represent remote interactions between source
points and are therefore approximated by low-rank matrices with the ACA
approach. Those blocks, which describe close interactions between source
points, are stored without any changes. These reorganisations in conjunction
with novel algorithms for manipulation with H-matrices reduce the calculation
complexity of matrix-vector multiplication (MVM) to approximately)(NO .
This simplification of MVM paves the road for speeding up of the solution of
LSE coming from BEM, as MVM is a key-operation for many existing solvers.
This paper analyses the ACA-based solver and describes how to choose
parameters for this solver when used in conjunction with BEM. Finally, a 3D
numerical example solved with this technique is presented.
Keywords: BEM 3D, hierarchical matrix, adaptive cross approximation,
iterative solver.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

Boundary Elements and Other Mesh Reduction Methods XXX 249

doi:10.2495/BE080251

1 Introduction

The classical BEM method yields a dense non-symmetric linear system of
equations (LSE). This LSE cannot be solved efficiently by existing iterative
solvers such as CG, GMRES, TFQMR, etc, which exploit the sparse pattern of
the matrix. Moreover, it is inefficient to store such dense LSE in sparse formats
such as Compressed Sparse Row (CSR) or Modified Sparse Row (MSR). In
contrast, other methods such as the fast multipole method and panel clustering
gain their efficiency from approximating the kernel function [1,2], yielding a
sparse LSE. This paper implements and studies the parameters and performance
of the Adaptive Cross Approximation (ACA) algorithm [5] for reducing the rank
of off-diagonal blocks in the three dimensional BEM matrix. The great
advantage of the ACA algorithm is that it is purely algebraic and does not need
to deal with the kernel. The algorithm uses a hierarchical matrix storage
approach where the matrix is split into many blocks classified into two
categories, weakly and strongly coupled. The former are off-diagonal blocks,
which represent remote interactions between source points and field elements,
and therefore can be approximated by low-rank matrices. For this purpose
Adaptive Cross Approximation (ACA) algorithm is used [5]. These blocks are
stored in a special Rk-format. The latter blocks describe close interactions
between source points, and field elements are stored without any changes in a
full-matrix format. This reorganisation of the LSE, implemented in conjunction
with novel algorithms for manipulation with H-matrices, reduces the calculation
complexity of matrix-vector multiplication (MVM) to approximately)(NO [2].
The simplification of MVM considerably reduces the computational burden of
the solving stage.
 This paper is organised as follows: in Section 2, key-points of H-matrices
technique are given, particularly their structure, cluster tree, domain partitioning
and admissibility conditions; in Section 3, two versions of ACA-algorithm are
described; Section 4 analyses ACA-algorithm and describes how to choose
parameters for this solver; Section 5 represents numerical results; Section 6
makes the conclusions; our acknowledgements are expressed in the final section.

2 Hierarchical matrices

This section provides a brief introduction to hierarchical matrices and explains
their structure and creation. The concepts of mesh partitioning, cluster tree
structure and admissibility condition [2–4] are also described.

2.1 Mesh partitioning and its storage scheme

The main task of mesh partitioning scheme is to build a hierarchy of source
points (indices) according to geometrical criterion. The indices I of nodes are
stored in the so-called cluster tree [2] (see Figure 1). The root of the tree IT is
the index set }1,...,0{ −= NTI where N is the number of degrees of freedom.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

250 Boundary Elements and Other Mesh Reduction Methods XXX

 The subsequent node t with more than indN indices, where indN is a
parameter, has exactly two successors: the first contains the first half of its
indices and the second one the second half. Nodes with no more than indN
indices are leaves. There are many ways to build such a partition [6]. In this
work geometric a bisection algorithm has been used. Cluster tree for a circle with
10 degrees of freedom (DOF) and 2=indN is represented in Figure 1.

 In Figure 1 notation)3(
)2(5I means that node number 5 is situated on third level

of cluster tree and consists of two indices or degrees of freedom. Cluster tree is a
basis for construction of H-matrix.

2.2 Structure of hierarchical matrices

In general case H-matrix represents hierarchy of Rk-matrices and Full-matrices
[2,4]. An mn× matrix M of rank at most k is said to be stored in Rk-matrix

representation if it is stored in factorised form TABM = where matrices
knRA ×∈ and kmRB ×∈ are both stored as an array (column-wise). In C

programming language it looks as in Figure 2 (i).

Figure 1: Cluster tree (N=10, Nind = 2).

struct rkmatrix {
Int k;
Int rows;
Int cols;
Double * a;
Double * b;
};

(i) – Rk- matrix

struct fullmatrix
{
Int rows;
Int cols;
Double * e;
};

(ii) – Full-matrix

struct
supermatrix {
Int rows;
Int cols;
Int block_rows;
Int block_cols;
Prkmatrix r;
Pfullmatrix f;
Psupermatrix * s;
};

(iii) – Super matrix

Figure 2: Basic structures in H-matrix theory.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

Boundary Elements and Other Mesh Reduction Methods XXX 251

 An mn× matrix M is said to be stored in Full matrix representation if the
entries ijM are stored as real numbers in an array of length mn * in the order

nmmnn MMMMMM ,...,,...,,...,,,..., 1212111 . In C programming language it
looks as in Figure 2 (ii).
 The matrix M is said to be stored in H-matrix representation if the
submatrices or blocks are stored either in Full-matrix or Rk-matrix
representation. Each block in the H-matrix tree can be: (i) a leaf: then the
corresponding matrix block is represented by Full matrix or Rk-matrix; (ii) a
node: then the block is decomposed into sons. This means that the matrix
corresponding to this block is a supermatrix that consists of submatrices
corresponding to its sons. In C programming language it looks as in Figure 2
(iii).

2.3 Admissibility condition

Each block in H-matrix represents interactions of nodes in a cluster tree,
particularly interactions of their DOFs. Those nodes of cluster tree which are
geometrically situated far one from the other form the blocks in Rk-format and
those that situated closely yields the blocks in Full-format. There is a special
criterion in order to find how far one from the others nodes are:

),,(_*),(2121 NNNN CCdiamMaxCCdist γ≥ (1)

where 21, NN CC are clusters in a cluster tree; γ is a coefficient and
),(_ 21 NN CCdiamMax is a function that finds maximal diameter among

clusters 21, NN CC . This criterion calls admissibility condition [4]. Those
clusters that are admissible according to (1) form blocks in Rk-format and those
which are not generate blocks in Full-format.
 Adaptive cross approximation (ACA)-algorithm described in the next section
is developed for low-rank approximation of large matrices. This algorithm works
with whole H-matrix. If a block is not admissible then its entries are stored
without approximation, otherwise ACA can be applied. So, ACA approximates
only admissible block, i.e. blocks stored in Rk-format.

3 Adaptive cross approximation

The off-diagonal blocks of H-matrix describe remote interactions between source
points and can be approximated by low rank matrices [5]. ACA algorithm is
developed to generate low rank approximants for such blocks. In contrast to
other methods such as fast multipole, panel clustering, etc., the low-rank
approximant is not generated by replacing the kernel function of the integral
operator. This algorithm is fully algebraic and uses the original matrix entries to
compute the low-rank approximant. ACA algorithm does not change kernel
function and can be applied only to the discrete integral operators with
asymptotically smooth kernels.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

252 Boundary Elements and Other Mesh Reduction Methods XXX

 There are two versions of ACA algorithm: fully and partially pivoted. Fully
pivoted realisation is feasible in a case when coefficient matrix A of the
equation

bxA = (2)

is already computed. In this case, ACA in conjunction with H-matrix technique
are used to speedup solving of LSE. However, if matrix A is not yet computed
and there is a possibility to generate its entries individually there is no need to
compute whole matrix beforehand. Instead, ACA approximation can be
integrated into computation stage in order to approximate this matrix on the fly.
In this case not all entries of whole matrix must be calculated. For this purpose
partially pivoted ACA algorithm can be used. Detailed description can be found
in [5].
 There is an error of ACA-approximation ACAε , which defines how deep the
approximation is. 0=ACAε means that there is no approximation, any 0>ACAε
leads to changes in the original matrix A (2). By using ACA algorithm any

0≥ACAε may be reached. The memory capacity needed for storing an
approximant depends on ACAε : higher error will need less memory. However,
high ACAε may damage LSE and as a result will lead to a very coarse result,
especially if the system is ill-conditioned. So, selection of ACAε is a matter of
balance between memory capacity, CPU time and precision of the result x of
the equation (2).

4 Selection of ACA parameters

It is desirable that the auxiliary parameters controlling the behaviour of a solver
are adjusted in order to optimise: CPU time CPUT , memory consumption M and
the solution error solε . ACA-based solver involves some auxiliary parameters
that play a key role in the optimisation of those main characteristics: γ from the
equation (1), size of cluster indN in cluster tree, ACA-error ACAε and number of
DOFs N .
 In order to find optimal values for each parameter it is necessary to define
dependencies between them. The most important parameter is the solution error,
which depends on three auxiliary parameters ACAindN εγ ,, . Different values of
γ and indN yield different cluster tree and as a result different H-matrix:

indindBL NdNcNbaNNK /),(2 +++= (3)

where FULLRKBL NNK /= is the ratio between the number of Rk-blocks and
Full-blocks in H-matrix, and a, b, c, d are fitting coefficients. This relationship

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

Boundary Elements and Other Mesh Reduction Methods XXX 253

and others in this paper have been established by means of non-linear least-
squares method for the model described in Section 5. Depending on parameter γ
the fitting coefficients change as follows:

5.0/37.33
 0965.8 0410257.0 2

=+
+−+−+=

γforN
NeNeK

ind

BL (4)

0.1/98.36
*0934.1*0583.9725.0 2

=+
+−+−+=

γforN
NeNeK

ind

BL (5)

5.2/98.68
*0813.3*042.2492.0 2

=+
+−−−+=

γforN
NeNeK

ind

BL (6)

The higher γ yields higher BLK and as a result higher solution error:

ACA
K

ACABLsol
BLeK εεε *35.38*67.121.4),(ln +−−= − (7)

where 2|| || xAb −=solε (see eq. 2)
 Coefficient BLK depends not only on γ and indN but also on model
geometry and mesh partitioner. The equations shown above are only applicable
to the theoretical example (see Section 5) and geometric bisection partitioning.
Different geometries may lead to different forms of dependencies but the
tendencies are the same:

(i) The less indN yields higher BLK ;
(ii) The higher γ yields higher BLK ;
(iii) The higher BLK yields higher solution error;
(iv) The higher ACAε yields higher solution error.

In most cases solε and ACAε are of the same order of magnitude. So, in order to
guarantee the solution error it is feasible to choose ACAε so that it is one order
less the solution error, i.e. if the solution error solε = 10-5 then ACAε = 10-6.
 Let us consider how BLK and ACAε affect memory consumption for different
values of N . In order to simplify equations two dependencies have been
measured: for floating BLK keeping the same 001.0=ACAε (8) and for different

ACAε keeping the same 0.2≈BLK (9).

25.12 7.057.018.1056.01.15),(ln BLBLBLBL KKKNKNM −+−+= (8)

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

254 Boundary Elements and Other Mesh Reduction Methods XXX

ACAACAACA NNM εεε ln/12.1ln 093.0ln 34.17.5),(ln +−+= (9)

The evaluation of functions),(BLCPU KNT and),(ACACPU NT ε gives very
similar dependencies as for memory consumption M (8), (9) and shows that the
higher BLK as well as higher ACAε reduce CPUT and M . There is a
contradiction: from one hand, higher BLK as well as higher ACAε reduce
memory consumption but from the other hand they yield higher solution error.
The solution of this contradiction is a question of balancing between involved
parameters. There are three possible cases:

1. The solution has to be obtained as fast as possible and its error is not critical.
In this case CPU time has priority. ACAε has to be chosen as high as possible
and BLK has to be optimal. An optimal value of BLK depends on indN .
Figure 3 shows that optimal value of indN is not the smallest one and therefore

function)(indCPU NT has a minimum in opt
indN - optimal value of indN for

current cluster tree. This happens because very small values of indN lead to
huge BLK . As a result H-matrix represents a very rough approximation of the
source matrix A (2) and iterative techniques for the solution of LSE need more
iterations to converge. This fact obviously has a connection with the condition
number of LSE, which goes up as ACAε grows. There is no special rule on how
to find optimal value of indN for any cluster tree but in most cases this value is
less than N 05.0 , where N is a total number of degrees of freedom.

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200 1400

Nind

Tc
pu

, s
ec 1.00E-07

1.00E-04
1.00E-02

Figure 3: CPUT vs. indN for different ACA-errors.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

Boundary Elements and Other Mesh Reduction Methods XXX 255

2. CPU time is not very critical but solution error has to be as small as possible.
In this case BLK and ACAε also have to be as small as possible. ACAε in this
case has to be chosen one order less the needed solution error.

3. Memory capacity is limited and therefore memory consumption must be
minimal. This case is very similar to the case number 1 because optimisation of
CPU time is directly connected to minimisation of memory consumption.
However, memory consumption does not have any tricks with indN and smaller

indN leads to smaller matrix A (2) as lower indN generates more Rk-blocks
which can be compressed up to chosen error ACAε .

5 Numerical examples

This section demonstrates efficiency of H-matrix technique in conjunction with
ACA algorithm. The aim of these computations is to examine the performance of
the ACA algorithm and to apply the results of the analysis made in Section 4. The
ACA-based solver deals with Laplace equation with mixed boundary conditions:
Dirichlet and Neumann. The boundary is meshed by linear triangular elements.
The H-matrix storage approach and the ACA algorithm have been used as a black-
box solver. As an input ACA-based solver takes matrix A (2) which has to be
generated in advance by a BEM software, vector of coordinates for each DOF
corresponding to each column and row in matrix A as well as the right-hand side
vector of eq. (2). After ACA-approximation generalised minimal residual method
(GMRES) is applied with the accuracy 10-6. The solver is based on modified HLib
library [7]. Geometrically, model is represented by a unitary cube (height, width
and breadth = 1) with 5248 collocation nodes. A comparison of CPU time,
memory capacity and error 2|||| Axb − between the ACA-based solver with

16=indN and 5.2=γ and a Direct LU solver is presented in Table 1.

Table 1: Performance of ACA-based solver compared with Direct (LU)
solver.

Solver ACAε CPUT , sec M , Mb 2|||| Axb −

Direct (LU) - 3870 220 0.0

10-6 9.28 76 0.000006

10-5 7.58 60 0.000023

10-4 6.1 46 0.000174

10-3 4.76 34 0.002076

10-2 3.84 23 0.023374

ACA-based

10-1 3.43 14 0.698741

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

256 Boundary Elements and Other Mesh Reduction Methods XXX

 As a conclusion, ACA-solver gives reasonable speedup and saves memory
needed for storing LSE. The ACA-solution with 310−=ACAε still has good
precision and compared to the direct solution it needs 6 times less memory and
can be obtained much faster. Figure 4 shows the comparison between the result

ix obtained with ACA-based and Direct LU solvers, in the horizontal and
vertical axes, respectively.

Figure 4: ACA- vs. Direct-solution comparison.

6 Conclusions

As a result of this work the main parameters that control the performance of an
ACA-based solver for BEM have been explained and experimental dependencies
have been established and cast into simple analytical expressions. A set of three
possible cases of restrictions in computational resources have been established
and on its basis appropriate recommendations regarding values of the parameters
have been proposed. At the end, a practical toy example demonstrates the
numerical properties of ACA-based solver for LSE and proves its efficiency.

Acknowledgements

The first author would like to thank the Wessex Institute of Technology for the
support by scholarship and to express his gratitude to the Max-Planck Institute
for their HLib library, which has been used in this work.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

Boundary Elements and Other Mesh Reduction Methods XXX 257

References

[1] Stefan Kurz, Oliver Rain and Sergej Rjasanow. The Adaptive Cross-
Approximation Technique for the 3-D Boundary-Element Method. IEEE
Transaction on Magnetics, Vol. 38, No. 2, March 2002

[2] Stefen Borm, Lars Grasedyck and Wolfgang Hackbusch. Hierarchical
Matrices, April 2005

[3] M. Bebendorf and R. Grzibovski. Accelerating Galerkin BEM for Linear
Elasticity using Adaptive Cross Approximation, May 2006

[4] Wolfgang Hackbusch, Lars Grasedyck and Steffen Borm. An Introduction
to Hierarchical matrices. Proceedings of EQUADIFF 10, Prague, August
2001

[5] M. Bebendorf and S. Rjasanov. Adaptive Low-Rank Approximation of
Collocation Matrices. Computing 70, 1-24, Springer-Verlag 2003

[6] Teresco James D, Karen D Devine, Joseph E Flaherty. Partitioning and
Dynamic Load Balancing for the Numerical Solution of Partial
Differential Equations. Numerical Solution of Partial Differential
Equations on Parallel Computers, August 2005

[7] Hlib library v.1.3. Max Planck Institute for Mathematics in the Sciences.
Inselstrasse 22-26, 04103 Leipzig, Germany

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line)

258 Boundary Elements and Other Mesh Reduction Methods XXX

