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Abstract 

The standard Boundary Element Method (BEM) with single domain yields the 
dense linear system of equation (LSE). This LSE cannot be solved efficiently by 
existing iterative solvers such as CG, GMRES, TFQMR, etc. Moreover, such 
LSE cannot be stored in advanced formats such as Compressed Sparse Row or 
Modified Sparse Row and therefore cannot be compressed in order to economise 
memory consumption. Methods such as the fast multipole method and panel 
clustering gain their efficiency from approximating the kernel function. This 
paper implements and studies the parameters and performance of the Adaptive 
Cross Approximation (ACA) algorithm for reducing the rank of off-diagonal 
blocks in the three dimensional BEM. The ACA algorithm is purely algebraic 
and does not need to deal with the kernel. The algorithm uses a hierarchical 
matrix storage approach where the matrix is split into many blocks. The           
off-diagonal blocks of this matrix represent remote interactions between source 
points and are therefore approximated by low-rank matrices with the ACA 
approach. Those blocks, which describe close interactions between source 
points, are stored without any changes. These reorganisations in conjunction 
with novel algorithms for manipulation with H-matrices reduce the calculation 
complexity of matrix-vector multiplication (MVM) to approximately )(NO . 
This simplification of MVM paves the road for speeding up of the solution of 
LSE coming from BEM, as MVM is a key-operation for many existing solvers. 
This paper analyses the ACA-based solver and describes how to choose 
parameters for this solver when used in conjunction with BEM. Finally, a 3D 
numerical example solved with this technique is presented. 
Keywords: BEM 3D, hierarchical matrix, adaptive cross approximation, 
iterative solver. 
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1 Introduction 

The classical BEM method yields a dense non-symmetric linear system of 
equations (LSE). This LSE cannot be solved efficiently by existing iterative 
solvers such as CG, GMRES, TFQMR, etc, which exploit the sparse pattern of 
the matrix. Moreover, it is inefficient to store such dense LSE in sparse formats 
such as Compressed Sparse Row (CSR) or Modified Sparse Row (MSR). In 
contrast, other methods such as the fast multipole method and panel clustering 
gain their efficiency from approximating the kernel function [1,2], yielding a 
sparse LSE. This paper implements and studies the parameters and performance 
of the Adaptive Cross Approximation (ACA) algorithm [5] for reducing the rank 
of off-diagonal blocks in the three dimensional BEM matrix. The great 
advantage of the ACA algorithm is that it is purely algebraic and does not need 
to deal with the kernel. The algorithm uses a hierarchical matrix storage 
approach where the matrix is split into many blocks classified into two 
categories, weakly and strongly coupled. The former are off-diagonal blocks, 
which represent remote interactions between source points and field elements, 
and therefore can be approximated by low-rank matrices. For this purpose 
Adaptive Cross Approximation (ACA) algorithm is used [5]. These blocks are 
stored in a special Rk-format. The latter blocks describe close interactions 
between source points, and field elements are stored without any changes in a 
full-matrix format. This reorganisation of the LSE, implemented in conjunction 
with novel algorithms for manipulation with H-matrices, reduces the calculation 
complexity of matrix-vector multiplication (MVM) to approximately )(NO  [2]. 
The simplification of MVM considerably reduces the computational burden of 
the solving stage. 
     This paper is organised as follows: in Section 2, key-points of H-matrices 
technique are given, particularly their structure, cluster tree, domain partitioning 
and admissibility conditions; in Section 3, two versions of ACA-algorithm are 
described; Section 4 analyses ACA-algorithm and describes how to choose 
parameters for this solver; Section 5 represents numerical results; Section 6 
makes the conclusions; our acknowledgements are expressed in the final section.  

2 Hierarchical matrices 

This section provides a brief introduction to hierarchical matrices and explains 
their structure and creation. The concepts of mesh partitioning, cluster tree 
structure and admissibility condition [2–4] are also described. 

2.1 Mesh partitioning and its storage scheme 

The main task of mesh partitioning scheme is to build a hierarchy of source 
points (indices) according to geometrical criterion. The indices I of nodes are 
stored in the so-called cluster tree [2] (see Figure 1). The root of the tree IT  is 
the index set }1,...,0{ −= NTI  where N  is the number of degrees of freedom.  
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     The subsequent node t  with more than indN  indices, where indN  is a 
parameter, has exactly two successors: the first contains the first half of its 
indices and the second one the second half. Nodes with no more than indN  
indices are leaves. There are many ways to build such a partition [6]. In this 
work geometric a bisection algorithm has been used. Cluster tree for a circle with 
10 degrees of freedom (DOF) and 2=indN  is represented in Figure 1. 

     In Figure 1 notation )3(
)2(5I  means that node number 5 is situated on third level 

of cluster tree and consists of two indices or degrees of freedom. Cluster tree is a 
basis for construction of H-matrix. 

2.2 Structure of hierarchical matrices  

In general case H-matrix represents hierarchy of Rk-matrices and Full-matrices 
[2,4]. An mn×  matrix M of rank at most k  is said to be stored in Rk-matrix 

representation if it is stored in factorised form TABM =  where matrices 
knRA ×∈ and kmRB ×∈ are both stored as an array (column-wise). In C 

programming language it looks as in Figure 2 (i). 
 

 

Figure 1: Cluster tree (N=10, Nind = 2). 
 

struct rkmatrix { 
Int k; 
Int rows; 
Int cols; 
Double * a; 
Double * b; 
}; 
 
 
 
 
(i) – Rk- matrix 

struct fullmatrix 
{ 
Int rows; 
Int cols; 
Double * e; 
}; 
 
 
 
 
 
(ii) – Full-matrix 

struct 
supermatrix { 
Int rows; 
Int cols; 
Int block_rows; 
Int block_cols; 
Prkmatrix r; 
Pfullmatrix f; 
Psupermatrix * s; 
}; 
 
(iii) – Super matrix 

Figure 2: Basic structures in H-matrix theory. 
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     An mn×  matrix M  is said to be stored in Full matrix representation if the 
entries ijM  are stored as real numbers in an array of length mn *  in the order 

nmmnn MMMMMM ,...,,...,,...,,,..., 1212111 . In C programming language it 
looks as in Figure 2 (ii). 
     The matrix M  is said to be stored in H-matrix representation if the 
submatrices or blocks are stored either in Full-matrix or Rk-matrix 
representation. Each block in the H-matrix tree can be: (i) a leaf: then the 
corresponding matrix block is represented by Full matrix or Rk-matrix; (ii) a 
node: then the block is decomposed into sons. This means that the matrix 
corresponding to this block is a supermatrix that consists of submatrices 
corresponding to its sons. In C programming language it looks as in Figure 2 
(iii). 

2.3 Admissibility condition 

Each block in H-matrix represents interactions of nodes in a cluster tree, 
particularly interactions of their DOFs. Those nodes of cluster tree which are 
geometrically situated far one from the other form the blocks in Rk-format and 
those that situated closely yields the blocks in Full-format. There is a special 
criterion in order to find how far one from the others nodes are: 
 

),,(_*),( 2121 NNNN CCdiamMaxCCdist γ≥                       (1) 
 

where 21, NN CC  are clusters in a cluster tree; γ  is a coefficient and 
),(_ 21 NN CCdiamMax  is a function that finds maximal diameter among 

clusters 21, NN CC . This criterion calls admissibility condition [4]. Those 
clusters that are admissible according to (1) form blocks in Rk-format and those 
which are not generate blocks in Full-format. 
     Adaptive cross approximation (ACA)-algorithm described in the next section 
is developed for low-rank approximation of large matrices. This algorithm works 
with whole H-matrix. If a block is not admissible then its entries are stored 
without approximation, otherwise ACA can be applied. So, ACA approximates 
only admissible block, i.e. blocks stored in Rk-format. 

3 Adaptive cross approximation 

The off-diagonal blocks of H-matrix describe remote interactions between source 
points and can be approximated by low rank matrices [5]. ACA algorithm is 
developed to generate low rank approximants for such blocks. In contrast to 
other methods such as fast multipole, panel clustering, etc., the low-rank 
approximant is not generated by replacing the kernel function of the integral 
operator. This algorithm is fully algebraic and uses the original matrix entries to 
compute the low-rank approximant. ACA algorithm does not change kernel 
function and can be applied only to the discrete integral operators with 
asymptotically smooth kernels. 
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     There are two versions of ACA algorithm: fully and partially pivoted. Fully 
pivoted realisation is feasible in a case when coefficient matrix A  of the 
equation 

 
bxA =                                                    (2) 

 
is already computed. In this case, ACA in conjunction with H-matrix technique 
are used to speedup solving of LSE. However, if matrix A is not yet computed 
and there is a possibility to generate its entries individually there is no need to 
compute whole matrix beforehand. Instead, ACA approximation can be 
integrated into computation stage in order to approximate this matrix on the fly. 
In this case not all entries of whole matrix must be calculated. For this purpose 
partially pivoted ACA algorithm can be used. Detailed description can be found 
in [5]. 
     There is an error of ACA-approximation ACAε , which defines how deep the 
approximation is. 0=ACAε  means that there is no approximation, any 0>ACAε  
leads to changes in the original matrix A  (2). By using ACA algorithm any 

0≥ACAε  may be reached. The memory capacity needed for storing an 
approximant depends on ACAε : higher error will need less memory. However, 
high ACAε  may damage LSE and as a result will lead to a very coarse result, 
especially if the system is ill-conditioned. So, selection of ACAε  is a matter of 
balance between memory capacity, CPU time and precision of the result x  of 
the equation (2). 

4 Selection of ACA parameters 

It is desirable that the auxiliary parameters controlling the behaviour of a solver 
are adjusted in order to optimise: CPU time CPUT , memory consumption M and 
the solution error solε . ACA-based solver involves some auxiliary parameters 
that play a key role in the optimisation of those main characteristics: γ  from the 
equation (1), size of cluster indN  in cluster tree, ACA-error ACAε  and number of 
DOFs N .  
     In order to find optimal values for each parameter it is necessary to define 
dependencies between them. The most important parameter is the solution error, 
which depends on three auxiliary parameters ACAindN εγ ,, . Different values of 
γ  and indN  yield different cluster tree and as a result different H-matrix: 
 

indindBL NdNcNbaNNK /  ),( 2 +++=                    (3) 
 
where FULLRKBL NNK /=  is the ratio between the number of Rk-blocks and 
Full-blocks in H-matrix, and a, b, c, d are fitting coefficients. This relationship 
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and others in this paper have been established by means of non-linear least-
squares method for the model described in Section 5. Depending on parameter γ  
the fitting coefficients change as follows: 
 

5.0/37.33
 0965.8 0410257.0 2

=+
+−+−+=

γforN
NeNeK

ind

BL                            (4) 

 

0.1/98.36
*0934.1*0583.9725.0 2

=+
+−+−+=

γforN
NeNeK

ind

BL                         (5) 

 

5.2/98.68
*0813.3*042.2492.0 2

=+
+−−−+=

γforN
NeNeK

ind

BL                        (6) 

 
The higher γ  yields higher BLK  and as a result higher solution error: 
 

ACA
K

ACABLsol
BLeK εεε *35.38*67.121.4),(ln +−−= −              (7) 

 
where 2|| || xAb −=solε  (see eq. 2) 
     Coefficient BLK  depends not only on γ  and indN  but also on model 
geometry and mesh partitioner. The equations shown above are only applicable 
to the theoretical example (see Section 5) and geometric bisection partitioning. 
Different geometries may lead to different forms of dependencies but the 
tendencies are the same: 
 
(i)  The less indN  yields higher BLK ; 
(ii) The higher γ  yields higher BLK ; 
(iii) The higher BLK  yields higher solution error; 
(iv) The higher ACAε  yields higher solution error. 
 
In most cases solε  and ACAε  are of the same order of magnitude. So, in order to 
guarantee the solution error it is feasible to choose ACAε  so that it is one order 
less the solution error, i.e. if the solution error solε  = 10-5 then ACAε = 10-6. 
     Let us consider how BLK  and ACAε  affect memory consumption for different 
values of N . In order to simplify equations two dependencies have been 
measured: for floating BLK  keeping the same 001.0=ACAε  (8) and for different 

ACAε  keeping the same 0.2≈BLK  (9). 
 

25.12  7.057.018.1056.01.15),(ln BLBLBLBL KKKNKNM −+−+=    (8) 
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ACAACAACA NNM εεε ln/12.1ln 093.0ln 34.17.5),(ln +−+=      (9) 
 
The evaluation of functions ),( BLCPU KNT  and ),( ACACPU NT ε  gives very 
similar dependencies as for memory consumption M  (8), (9) and shows that the 
higher BLK  as well as higher ACAε  reduce CPUT  and M . There is a 
contradiction: from one hand, higher BLK  as well as higher ACAε  reduce 
memory consumption but from the other hand they yield higher solution error. 
The solution of this contradiction is a question of balancing between involved 
parameters. There are three possible cases: 
 
1. The solution has to be obtained as fast as possible and its error is not critical. 
In this case CPU time has priority. ACAε  has to be chosen as high as possible 
and BLK  has to be optimal. An optimal value of BLK  depends on indN . 
Figure 3 shows that optimal value of indN  is not the smallest one and therefore 

function )( indCPU NT  has a minimum in opt
indN  - optimal value of indN  for 

current cluster tree. This happens because very small values of indN  lead to 
huge BLK . As a result H-matrix represents a very rough approximation of the 
source matrix A  (2) and iterative techniques for the solution of LSE need more 
iterations to converge. This fact obviously has a connection with the condition 
number of LSE, which goes up as ACAε  grows. There is no special rule on how 
to find optimal value of indN  for any cluster tree but in most cases this value is 
less than N 05.0 , where N  is a total number of degrees of freedom. 
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Figure 3: CPUT  vs. indN  for different ACA-errors. 
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2. CPU time is not very critical but solution error has to be as small as possible. 
In this case BLK  and ACAε  also have to be as small as possible. ACAε  in this 
case has to be chosen one order less the needed solution error. 
 
3. Memory capacity is limited and therefore memory consumption must be 
minimal. This case is very similar to the case number 1 because optimisation of 
CPU time is directly connected to minimisation of memory consumption. 
However, memory consumption does not have any tricks with indN  and smaller 

indN  leads to smaller matrix A  (2) as lower indN  generates more Rk-blocks 
which can be compressed up to chosen error ACAε . 

5 Numerical examples 

This section demonstrates efficiency of H-matrix technique in conjunction with 
ACA algorithm. The aim of these computations is to examine the performance of 
the ACA algorithm and to apply the results of the analysis made in Section 4. The 
ACA-based solver deals with Laplace equation with mixed boundary conditions: 
Dirichlet and Neumann. The boundary is meshed by linear triangular elements. 
The H-matrix storage approach and the ACA algorithm have been used as a black-
box solver. As an input ACA-based solver takes matrix A  (2) which has to be 
generated in advance by a BEM software, vector of coordinates for each DOF 
corresponding to each column and row in matrix A as well as the right-hand side 
vector of eq. (2). After ACA-approximation generalised minimal residual method 
(GMRES) is applied with the accuracy 10-6. The solver is based on modified HLib 
library [7]. Geometrically, model is represented by a unitary cube (height, width 
and breadth = 1) with 5248 collocation nodes. A comparison of CPU time, 
memory capacity and error 2|||| Axb −  between the ACA-based solver with 

16=indN  and 5.2=γ  and a Direct LU solver is presented in Table 1. 

Table 1:  Performance of ACA-based solver compared with Direct (LU) 
solver. 

Solver ACAε  CPUT , sec M , Mb 2|||| Axb −  

Direct (LU) - 3870 220 0.0 

10-6 9.28 76 0.000006 

10-5 7.58 60 0.000023 

10-4 6.1 46 0.000174 

10-3 4.76 34 0.002076 

10-2 3.84 23 0.023374 

ACA-based 

10-1 3.43 14 0.698741 
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     As a conclusion, ACA-solver gives reasonable speedup and saves memory 
needed for storing LSE. The ACA-solution with 310−=ACAε  still has good 
precision and compared to the direct solution it needs 6 times less memory and 
can be obtained much faster. Figure 4 shows the comparison between the result 

ix obtained with ACA-based and Direct LU solvers, in the horizontal and 
vertical axes, respectively.  
 

 

Figure 4: ACA- vs. Direct-solution comparison. 

6 Conclusions 

As a result of this work the main parameters that control the performance of an 
ACA-based solver for BEM have been explained and experimental dependencies 
have been established and cast into simple analytical expressions. A set of three 
possible cases of restrictions in computational resources have been established 
and on its basis appropriate recommendations regarding values of the parameters 
have been proposed. At the end, a practical toy example demonstrates the 
numerical properties of ACA-based solver for LSE and proves its efficiency. 
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