
Efficient elasto-plastic analysis via an 
adaptive finite element-boundary 
element coupling method 

W. Elleithy & U. Langer 
Institute of Computational Mathematics,  
Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, 
Austria 

Abstract 

This paper presents an adaptive FEM-BEM coupling method for elasto-plastic 
analysis. The proposed method is valid for both two- and three-dimensional 
applications. The method takes care of the evolution of the elastic and plastic 
regions and avoids some limitations of the standard FEM-BEM coupling 
approaches. It estimates the FEM and BEM sub-domains and automatically 
generates/adapts the FEM and BEM meshes/sub-domains, according to the state 
of computation. The method eliminates the cumbersome trial and error process 
in the identification of the FEM and BEM sub-domains in the standard FEM-
BEM coupling approaches. An example application confirms the effectiveness of 
the proposed method. 
Keywords: FEM, BEM, elasto-plasticity, adaptive coupling. 

1 Introduction 

There exist many application contexts where coupling of the finite element 
method (FEM) and the boundary element method (BEM) is, in principle, very 
attractive. Examples include, but not limited to, elasto-plastic applications with 
limited spread of plastic deformations. The FEM is utilized where the plastic 
material behaviour is expected to develop. The remaining bounded/unbounded 
linear elastic regions are best approximated by the BEM. 
     A crucial aspect of the existing (standard) FEM-BEM coupling approaches is 
that they require the user/analyst to predefine and manually localize the FEM and 
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BEM sub-domains (prior to analysis). In an elasto-plastic analysis, it is difficult 
or impossible to predict regions where plasticity occurs. If the FEM sub-domain 
is not predefined in order to enclose the evolutional plastic regions, significant 
errors will be introduced to the conducted FEM-BEM coupling analysis. On the 
other hand, if the FEM sub-domain is notably over-estimated, the excessive 
number of degrees of freedom (in order to model the linear elastic part) will 
significantly increase the computational demand. 
     In pure BEM elasto-plastic analysis, the conventional numerical 
implementation requires the domain to be discretized into cells (predefined by 
the user/analyst). In this case the BEM loses its main advantage. Astrinidis et 
al. [1] presented adaptive discretization schemes that are based on a stress 
smoothing error criterion in the case of 2D elastic analysis, and on a total strain 
smoothing error criterion in the case of 2D elasto-plasticity. Maischak and 
Stephan [2] showed convergence for the boundary element approximation, 
obtained by the hp-version, for elastic contact problems, and derived a 
posteriori error estimates together with error indicators for adaptive hp-
algorithms. Rebeiro et al. [3] developed a pure BEM approach to automatically 
generate the internal cells. Their approach considers cases when plasticity 
starts from the boundary. The stresses at the boundary nodes are computed and 
the internal cells are generated surrounding regions where plasticity is 
detected. The process is iterated until the detected plastic regions are fully 
discretized. 
     Brink et al. [4] investigated the coupling of mixed finite elements and 
Galerkin boundary elements in linear elasticity, taking into account adaptive 
mesh refinement based on a posteriori error estimators. Carstensen et al. [5] 
presented an h-adaptive FEM-BEM coupling approach (mesh refinement of the 
boundary elements and the finite elements) for the solution of visco-plastic and 
elasto-plastic interface problems. Mund and Stephan [6] derived a posteriori 
error estimates for nonlinear coupled FEM-BEM equations by using hierarchical 
basis techniques. They presented an approach for adaptive error control, which 
allows independent refinements of the finite and boundary elements. 
     Doherty and Deeks [7] developed an adaptive approach for analyzing 2D 
elasto-plastic unbounded media by coupling the FEM with the scaled boundary 
finite element method. The analysis begins with an “initial” finite element mesh 
that tightly encloses the load-medium interface, whereas the remainder of the 
problem is modelled using the semi-analytical scaled boundary finite element 
method. Load increments are applied, and if plasticity is detected in the outer 
band of finite elements, an additional band is added around the perimeter of the 
existing mesh. The scaled boundary finite element sub-domain is stepped out 
accordingly. However, this approach requires, in general, a preliminary 
knowledge of the parts of the domain that are likely to yield. Moreover, it 
requires additional iterations when plasticity is detected in the outer band of 
finite elements in order to accurately determine the computational sub-domains. 
This may end up in a very time-consuming process. 
     Elleithy and Langer [8] and Elleithy [9] presented an adaptive FEM-BEM 
coupling method for 2D elasto-plastic analysis. The method proposes the use of 
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simple, fast post-calculations, based on energetic methods, and follows a simple 
hypothetical elastic boundary element computation in order to give fast and 
helpful estimation of the FEM and BEM sub-domains. 
     In this paper we present an alternative to the adaptive coupling method 
presented in [8,9]. The proposed method is valid for both two- and three-
dimensional applications. The adaptive coupling method improves the estimation 
of regions where plastic material behaviour is going to develop. An outline of the 
paper is as follows. Section 2 briefly summarizes the conventional FEM-BEM 
coupling equations adopted in this investigation and the adaptive method of 
[8,9]. In the sequence, Section 3 presents the proposed adaptive FEM-BEM 
coupling method for elasto-plastic analysis. In Section 4, we present a numerical 
example that highlights the effectiveness of the adaptive coupling method. 

2 Preliminaries 

In this section, the conventional (direct) FEM-BEM coupling equations adopted 
in this investigation (without loss of generality) and the adaptive method of [8,9] 
are briefly described. 
     Elasto-plastic problems with limited spread of plastic strains lend themselves 
to a coupled approach. The FEM is utilized in regions where plastic material 
behaviour is expected to develop, whereas the complementary 
bounded/unbounded linear elastic region is approximated using the symmetric 
Galerkin BEM. The domain of the original problem Ω  (with known boundary 
conditions specified on the entire boundary DN Γ∪Γ=Γ ) is decomposed into 
two sub-domains, namely ΩF  and ΩB , with the FEM-BEM coupling interface 

CΓ . The coupled FEM-BEM equations, in incremental form, are solved at each 
iteration using a tangent FEM stiffness matrix TK . The coupled FEM-BEM 
equations for a typical iteration may then be reformulated in the symmetric form 
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where u  and ψ  are the displacements and the residual force vectors, 

respectively. The subscripts F)(  and B)(  indicate the displacement vectors 
(force vectors) not associated with the FEM and BEM sub-domains interface, 
respectively. The subscript C)(  indicates those associated with the interface CΓ . 
     Ref. [8,9] presented an adaptive FEM-BEM coupling method for solving 
problems in elasto-plasticity. The adaptive coupling method follows a linear 
hypothetical elastic computation at levels of loading specified by the user. The 
hypothetical elastic state of stresses is checked against yielding with a pseudo 
value of the material yield strength. An estimate of the regions sensible for FEM 
discretization is then derived. The FEM and BEM meshes are automatically 
generated. A coupled FEM-BEM stress analysis involving elasto-plastic 
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deformations is then conducted. In order to determine the pseudo value of the 
material yield strength, an energy balance between the hypothetical elastic and 
elasto-plastic calculations was assumed in [8,9] 

,)()( : plasticelastoelastic   hypelastic   hyp −
ΩΩ
∫∫ ≈= dVdVU ijijijij εσεσ   (2) 

where elastic   hypU  elastic is the total hypothetical elastic strain energy. The 

pseudo value of the material yield strength pseudo  yσ  is evaluated as follows 
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where distU  is the total strain energy that is vulnerable for redistribution due to 
plastic deformations and c  is a constant that depends on the geometry of the 
stress-strain curve. 

3 Adaptive FEM-BEM coupling method 

In this section we present an adaptive FEM-BEM coupling method for elasto-
plastic analysis. The method is valid for both 2D and 3D applications. It 
estimates the FEM and BEM sub-domains and automatically generates/adapts 
the FEM and BEM meshes/sub-domains, according to the state of computation. 
The adaptive coupling method improves the estimation of regions where plastic 
material behaviour is going to develop (regions where the FEM is employed). In 
the presence of plastic deformations in the FEM region, the solution there is 
obtained via an iterative scheme. Naturally, an improvement to the estimated 
FEM and BEM sub-domains will result in additional savings of required system 
resources and/or a higher potential advantage of eliminating the cumbersome 
trial and error process in the identification of the FEM and BEM sub-domains. 
Materials of von-Mises type are considered in this investigation. 
     The basic steps of implementation of the proposed adaptive FEM-BEM 
coupling method may be summarized as follows: 
1. Levels of loading ),.......,...,,( 21 mi LLLLLLLL  are specified by the 

user/analyst in order to get an estimate of the FEM and BEM sub-domains 
( mLL  is the maximum level of loading for the problem at hand). 
If the user/analyst prefers to use a constant interface throughout the FEM-
BEM coupling analysis, the maximum load level mLL  is specified (estimated 
FEM and BEM sub-domains will be utilized for all load increments). 

2. For mk ,...,2,1=   
2.1. A hypothetical elastic stress state is determined with the load level kLL  

via BEM elastic analysis with initial BEM discretization or FEM elastic 
analysis utilizing a FEM coarse mesh. 

2.2. Regions that violate the yield condition (utilizing the hypothetical 
elastic stresses of 2.1) are detected. A subsequent elastic analysis is 
conducted with a “modified” level of loading mod,kLL , “effective” 
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material properties for the detected regions (effective Young’s modulus 
effkE ,  and Poisson ratio effk ,ν ) and material properties E  and ν  for 

the remainder of the problem. 
2.3. The hypothetical elastic state of stresses of step 2.2 is checked against 

the yield condition. FEM discretization is automatically generated for 
the regions that violate the yield condition. It may be useful to add a 
few bands of finite elements around the perimeter of the discretized 
FEM sub-domain. Consequently, the BEM discretization is generated 
so as to represent best the remaining bounded/unbounded linear elastic 
regions (fig. 1). 

2.4. Coupled FEM-BEM stress analysis involving elasto-plastic 
deformations is conducted for the current load increment. 

2.5. A repetition of step 2.4 is required for the next load increment if the 
current state of computation in addition to the load increment is less 
than or equal to kLL , else go to step 2.1. 
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Figure 1: Estimated FEM and BEM sub-domains. 

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXX  233



     It should be emphasized that steps 1-2.3 are carried out for the sole purpose of 
estimating and adapting the FEM and BEM sub-domains according to the state 
of computation. Modified load levels mod,kLL  and effective material properties 

( effkE ,  and effk ,ν ) are not involved in carrying out step 2.4. 
     In the remainder of this section we will elaborate more on the determination 
of the modified level of loading mod,kLL  and effective material properties 

( effkE ,  and effki,ν ) at a typical level of loading kLL . 
     The simplicity of linear elastic analysis has motivated some researchers to 
attempt solving elasto-plastic problems by adapting a modified form of available 
elastic solutions (see, e.g. references [10,11]). Linear elastic analysis in an 
iterative manner with a complete spatial distribution of updated material 
properties is conducted at each iteration in order to approximately simulate 
elasto-plastic behaviour. The schemes for updating the material properties 
include projection, arc length, and energy methods (fig. 2 ). Material points with 
the same stress level are represented by single points (e.g. a , b , e  and f ) on 
the uniaxial stress-strain curve (fig. 3). 
 

σ σ
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Figure 2: Energetic methods (Neuber and strain energy density methods). 

     Let us consider materials of von-Mises type obeying a bilinear strain 
hardening rule. Neuber’s method (fig. 2) assumes an energy balance between the 
strain energy density corresponding to the elasto-plastic stress-strain state and 
the hypothetical elastic strain energy density (same geometry submitted to the 
same loading [10,11]). For uni-dimensional states of stress, it is assumed that the 
product of stress and strain in elasticity is locally identical to the same product 
calculated by means of an elasto-plastic analysis. For tri-dimensional states of 
stress, the fundamental hypothesis may be written as [10,11] 

.)()( elastic   hypplasticelasto ijijijij εσεσ ≅−    (4) 
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Figure 3: Effective Young’s modulus effE . 

     From a virtual work principle we utilize the global formulation (eqn (2)). We 
further assume that there exists a stress level with which effective material 
properties are determined (stress level d , fig. 3). Next, at a typical level of 
loading kLL  we define the total strain energy that is vulnerable for redistribution 
due to plastic deformations dist ,kU  as the total hypothetical strain energy of the 
regions that violate the yield condition (step 2.2, basic steps of implementation 
of the adaptive coupling method) 

∫
Ω

= ,))(( elastic   hypdist , dVU xxijijk κεσ      (5) 

where 1=xκ  if 0))(( elastic   hyp >− xyyijij εσεσ , otherwise 0=xκ  and yσ  is 

the uniaxial material yield strength. Eyy /σε = . The effective Young’s modulus 

effkE ,  is then evaluated (fig. 2,3) as follows 
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where c  is a constant. For perfect plasticity and isotropic hardening plasticity 
models, it is concluded from fig 3 that a reasonable and conservative value is 

1=c . The effective Poisson ratio effk ,ν  is obtained from equations adopted in 
iterative elastic analyses in order to simulate elasto-plastic behaviour [10] 

3211 , keffk EE φ+=       (7) 
and 

).3(, keffeffk EE φνν +=     (8) 
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     For the determination of the modified level of loading mod,kLL , we further 
investigate the uniaxial stress-strain curve. Relating the hypothetical elastic 
stress state curve to that of the effective material parameters, it may be easily 
concluded that 

.,mod, effiik EELLLL =     (9) 

     Compared to the adaptive coupling method of [8,9], the presented method 
involves additional FEM or BEM elastic iterations. These elastic iterations 
involved in estimation of the FEM and BEM sub-domains are more than 
rewarded by an improved estimate of the FEM and BEM sub-domains provided 
by the proposed adaptive method. 

4 Example application 

In this section we present an example application that highlights the 
effectiveness of the adaptive FEM-BEM coupling method presented in Section 3. 
     The square plate with a centred elliptical defect (fig. 4) is subjected to 
uniformly distributed tensile loads over the two pairs of the opposing ends (equal 
biaxaial tension). The applied tractions 26 N/m  x10100=P  are scaled with the 
load factor λ . The elastic material properties of the plate are described by 
Young’s modulus ( 29 N/m x109.206=E ) and Poisson’s ratio ( 29.0=ν ). 
Material of von-Mises type is considered ( 26 N/m 450x10=yσ ), with no 
hardening effect ( 0=H ), as a yield function and plane strain loading conditions. 
Due to symmetry, only one quarter of the problem is modelled. 
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Figure 4: Plate with a centred elliptical defect. 

     The problem is solved by means of the adaptive coupling method presented in 
Section 3. The loads are applied incrementally. The elastic prediction and 
estimates of the regions sensible for discretization by the FEM obtained via the 
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adaptive coupling method are shown in (fig. 5). The coupled FEM-BEM 
solutions are obtained with the automatically generated FEM and BEM 
discretization for the particular values of λ . The FEM discretization is generated 
over the regions that are estimated as sensible for FEM discretization, while the 
BEM mesh is generated to represent the remaining linear elastic region. Fig. 5 
further shows the yielded regions obtained using the adaptive coupled FEM-
BEM method for the selected values of λ . The results clearly show that the 
adaptive FEM-BEM coupled method employs smaller FEM sub-domains. 
Moreover, the method is practically advantageous as it does not necessitate the 
predefinition and manual localization of the FEM and BEM sub-domains. 
 

60      50      40      30      20      10 60      50      40      30      20      10

0.7=λ 0.9=λ

region FEM Estimated

prediction Elasic

solution BEM-FEM Coupled

 

Figure 5: Estimated FEM regions and yielded regions (adaptive FEM-BEM 
coupling). 

5 Conclusion and outlook 

The present adaptive coupling method is practically advantageous as it does not 
necessitate predefinition and manual localization of the FEM and BEM sub-
domains. Moreover, the method is computationally efficient as it substantially 
decreases the size of FEM meshes, which plainly leads to reduction of required 
system resources and gain in efficiency. The numerical results in 2D elasto-
plastic analysis confirm the effectiveness of the proposed method. The extension 
of the adaptive FEM-BEM coupling method to 3D elasto-plastic applications is 
currently under investigation. As in the 2D analysis, the FEM sub-domain 
discretization is progressively adapted and automatically generated to include 
regions where plasticity occurs, according to the state of computation. 
Preliminary results indicate the practicality and the efficiency of the FEM-BEM 
coupling method for 3D elasto-plastic applications. 
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