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Abstract

The approach presented in this paper is based on the Adaptive Cross Approxima-
tion (ACA) applied to BEM-derived matrices. The ACA method is purely alge-
braic and does not require information on the kernel. In this way, it offers an inter-
esting alternative to the well established Fast Multipole Method. The algorithm
uses a hierarchical approach for the matrix storage and manipulation. This paper
describes the assembly approach for the usual H and G matrices coming from
BEM equations into a hierarchical coefficient matrix AH . The efficiency of the
developed scheme is tested for a potential problem involving a 3D unitary cube,
and then the method is applied to an electrostatic problem involving an anatomic
model of the human body. This 3D example consisting of 80 000 degrees of free-
dom could easily be solved in a low specification PC.
Keywords: boundary elements, adaptive cross approximation, hierarchical matri-
ces, linear systems of equations.

1 Introduction

This paper considers some technical aspects related to implementation of the Adap-
tive Cross Approximation (ACA) algorithm [1] to general potential problems
solved by the collocation Boundary Element Method (BEM). The great advantage
of the ACA algorithm is that it is purely algebraic and does not need to operate with
the kernel. The algorithm uses a hierarchical matrix storage approach [2] where the
matrix is split into many blocks classified into two categories, weakly and strongly
coupled. The former are off-diagonal blocks which represent remote interactions
between source points and field elements, and therefore can be approximated by
low-rank matrices. For this purpose the ACA algorithm is used [2]. These blocks
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are stored in a special Rk-format [2]. The latter blocks describing close interac-
tions between source points and field elements are stored without any changes in
a full-matrix format [2].

The novelty of this paper consists in a formulation of the approach allowing to
assemble both H and G matrices from BEM formulation (see Section 2) within
only one hierarchical matrix AH . Two different ways to implement the approach
for existing BEM formulations are considered. This paper demonstrates the effi-
ciency of the approach with more than 80 000 degrees of freedom (DOF) and
reports its numerical properties. This paper is organised as follows: in Section 2,
the BEM method formulation for a general electrostatic problem is presented; in
Section 3, the assembly scheme applied to a simple example is described; Section 4
suggests different ways to implement the approach within existing BEM formula-
tions; Section 5 presents the numerical results of the application to electrostatic
problem; Section 6 elaborates the concluding remarks.

2 Boundary element method formulation

Consider solving the Laplace equation for the unknown scalar field u(x) given by:

∇2u(x) = 0, x ∈ � ⊆ R3 (1)

where � is the integration domain with boundary � = ∂(�) of outward unit nor-
mal n̂, and proper boundary conditions are applied to �, i.e. Dirichlet or Neumann
type. Then, the boundary integral formulation for eq. (1) can be expressed in the
following way [3]:

ciu(xi ) +
∫

�

q∗(x, xi)u(x)d� −
∫

�

u∗(x, xi )q(x)d� = 0, (2)

where q is the normal derivative of u in n̂ direction, u∗ is the Green’s function
of Laplace equation such that ∇2u∗ = 0, q∗ its normal derivative in n̂ direction,
and ci is the self-interaction coefficient. In 3D problems u∗ and q∗ become: u∗ =
1/(4πr) and q∗ = −r · n̂/(4πr3), respectively, where r = x − xi and r = |r| is
the distance between the field (x) and source (xi) points.

In order to solve eq. (2), � is discretised into Ne constant triangular boundary
elements �e. Thus, the discretised boundary integral equation becomes:

ciui +
Ne∑
j=1

h(j)uj −
Ne∑
j=1

g(j)qj = 0, (3)

where uj is the average potential in the j -th element, qj is the mean normal flux
in the centroid of j -th element, and q(j) and h(j) are the following BEM integrals:

g(j) = 1

4π

∫
�j

1

r
d�j (4)

h(j) = 1

4π

∫
�j

r · n
r3

d�j (5)
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The assembly scheme consists in appending one equation (2) per each selected
source point xi , to the global system of equations (A x = b), where A ∈ Rn×m

contains the coefficients h(j) and g(j), x is a 1-column array with the unknown
u and q , b is the right hand side 1-column array formed by the boundary con-
ditions. The matrix A will be presented in hierarchical format using the tech-
niques described in [2]. Each admissible block [2] is approximated using the ACA
algorithm [1].

3 The assembly scheme

In order to take advantage of the efficiency provided by H-matrices in conjunction
with ACA approximation it is not only necessary to build the structure of the matrix
AH from the equation Ax = b but also to compute all the entries and assemble
them in an appropriate way. There are two radically different ways to perform this
operation: for the case when all the entries of matrix A have to be computed in
advance and for the case when only several rows and columns of the initial matrix
have to be calculated. The former approach has been referred to as fully-pivoted
ACA algorithm in [1], while the latter as the partially-pivoted version of ACA
algorithm [1].

Both approaches are based on a hierarchy of blocks in the coefficient matrix
AH called supermatrix [2]. Each block represents one of three cases: Full-block,
Rk-block or a supermatrix of a lower level. The Full-blocks can not be approxi-
mated and therefore are computed and stored without any changes, while the Rk-
blocks are approximated an stored in a factorized form according to the following
expression:

BRK =
k∑

i=1

UVT (6)

where k is the rank of the approximated block, U ∈ Rnxk and V ∈ Rmxk, n and m

are number of rows and columns in an Rk-block.
If the block under analysis is a supermatrix, it has to be further divided into

either Full- or Rk-block. Due to the structure of AH , the assembly approach is a
recursive process.

The only difference with the partially pivoted ACA approach [1] is that the Rk-
blocks can be generated on the fly during the assembly according to the algorithm
of partially pivoted ACA [1]. The assembly scheme for the Full-blocks will remain
the same: the matrix entry Aij corresponds to the contribution of boundary element
j to i-th BEM equation. Therefore Aij element involves the source point xi and the
DOF associated with j BE.

It is worth mentioning that the coefficients of H and G matrices can be computed
using different numerical algorithms. The computation of H and G is performed
by an external function that gives as an output the values of corresponding h and g

coefficients. Hence, the whole algorithm for the computation of sub-block entries
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can be represented in the following way:

Block[i][j ] =




hij ∀i �= j and bc[j ] = 1

gij ∀bc[j ] = 0

1/2 ∀i = j and bc[j ] = 1

(7)

where i = 1 : rows, j = 1 : cols, vector bc contains the information about
boundary condition (BC), i.e. it contains 0 or 1 for the corresponding degree of
freedom if appropriately the potential or normal flux are known:

bc[j ] =
{

0 if DOF j has Dirichlet-type BC

1 if DOF j has Neumann-type BC
(8)

The i-th row of the right hand side vector RHS can be computed as follows:

RHS[i] =
cols∑

j=1/bc[j ]=1

gijq[j ] −
cols∑

j=1//bc[j ]=0

hiju[j ] (9)

where i = 1 : rows, vector u contains appropriate values for known potentials
while vector q stores known normal fluxes. If bc[i] = 0, then the RHS[i] has to be
updated as follows:

RHS[i] = RHS[i] − u[i]/2 (10)

3.1 An example

This section illustrates the assembly scheme with a worked example. The problem
represents a Laplacian equation in a 3D unitary cube (ie. of dimensions 1 × 1 × 1)
with conductivity k = 1 (see Figure 1). The model has mixed boundary conditions:
Dirichlet for the potentials and Neumann for the normal fluxes. The boundary has
been meshed with constant triangular elements yielding 12 discontinuous freedom
nodes which are located in the centroid of each element (see Figure 2). Taking into
account the boundary conditions, the model yields N = 12 unknowns: 4 normal
fluxes and 8 potentials. A cluster tree [2] for this model is obtained with the help
of bisection clustering technique [4] using the maximal number of indices per
node nmin = 4 [2]. Its clusters and the corresponding H-matrix AH are shown in
Figure 2. The number in each block represents its rank, shaded blocks represent
the Full-blocks while the white ones are Rk-blocks. AH a square matrix AH =
[12 × 12] which has 16 blocks where only 2 of them satisfy the admissibility
condition [2]. Those two blocks are admissible and stored in Rk-format [2]. For
the sake of simplicity, the assembly scheme of only two blocks, i.e. BF = [(1, 2)×
(1, 2)] and BRK = [(1, 2) × (11, 12)] is considered. The block BF is represented
by

vertex/elid el1 el2 el11 el12

x1 (0,1,0) (0,0,0) (1,1,0) (1,1,0)

x2 (0,0,0) (1,0,0) (1,1,1) (0,1,0)

x2 (0,0,1) (0,0,1) (1,0,1) (1,1,1)
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Figure 1: Model “cube”.

Figure 2: A collection of clusters for a test problem and the corresponding H-
matrix.

Full-matrix format while the block BRK is an Rk-block. There are several vectors
storing the auxiliary information about the model. For example the vector

xs = [(0, 0.33, 0.33); (0.33, 0, 0.33)], (11)

consists of the 3D coordinates of the source points corresponding to the first and
second row in the super-matrix AH , i.e. row number 1 corresponds to the source
point with 3D coordinates (x, y, z) = (0, 0.33, 0.33) whereas the row number 2
corresponds to (0.33, 0, 0.33); three vectors x1, x2 and x3 that consist of the 3D
coordinates of the vertices of triangular field elements corresponding to each col-
umn in the super-matrix AH (see Table 3.1). In Table 3.1 the elements el1, el2, el11
and el12 correspond to the elements indicated in Figure 2 (the id of the field ele-
ment coincide with the id of the DOF). The bc vector storing boundary conditions
looks as follows:

bc = [0, 1, 0, 1], (12)

i.e. the potential is known for the first element corresponding to column number 1.
The vector of known potentials looks as follows:

u = [1, und, 0, und], (13)
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i.e. known potential for the first element is equal to 1, however, the potential for
the element number 2 is not known and therefore represented by und which means
undefined value. The vector of known normal fluxes stores the following data:

q = [und, 0, und, 0], (14)

i.e. known normal fluxes for second and twelfth elements are both equal to 0.
Having vectors (11–14) in mind and corresponding to eq. (7), the entries of block
BF and BRK have to be computed as follows:

BF =
[

0.1915 −0.1148

0.0768 0.5

]
, BRK =

[
0.0346 −0.0324

0.0385 −0.0304

]
(15)

Once the BRK block is computed, it can be approximated within two iterations
following the algorithm of fully pivoted ACA presented in [1]. As it has been
mentioned in eq. (6), the Rk-blocks are presented in factorised form using the
vectors V and U . At the end of first iteration, they look as follows:

V = [0.0346 0.0385], U = [1 − 0.7901] (16)

The next iteration leads to the final approximation as it reaches the maximal rank
of block BRK :

V = [0.0346 0.0385 − 0.00503 0], U = [1 − 0.7901 0 1] (17)

As a result of second iteration, the matrix approximated without any error, i.e. the
initial block and the block after approximation are absolutely the same. It is possi-
ble to check this fact using the expression (6). In this particular example, the rank
of the approximated block is equal to rank of the initial matrix. However, when
the rank is fairly high the difference may reach hundreds of times economizing
the memory consumption and reducing the complexity of matrix-vector multipli-
cations.

4 Different ways to implement an ACA-based solver for
existing BEM formulations

There are two ways to implement ACA-based solver for the solution of LSE com-
ing from BEM method:

(i) As a “grey-box” solver, in which the solver takes as an input: the coefficient
matrix A, the right hand side of the equation Ax = b and the information about
geometry, which could be provided by an existing BEM code;

(ii) or integrated within the BEM strategy where the assembly scheme is embed-
ded within the BEM code. In this case A matrix has to be assembled according to
its hierarchical representation during the evaluation of H and G matrix coefficients
in the BEM formulation.

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

214  Boundary Elements and Other Mesh Reduction Methods XXX



The first approach needs to store two copies of the matrix A at the same time,
i.e. one original coefficient matrix A and its hierarchical representation AH , i.e.
the number of entries NST can be estimated as follows:

NST = NM +
NRK∑
i=1

ki(ni + mi) +
NF∑
i=1

nimi (18)

where N = rows and M = cols are the number of rows and columns in the orig-
inal matrix A, NRK and NF are the number of Rk and Full blocks appropriately,
ni and mi are appropriately the number of rows and columns in block i of the
coefficient H-matrix AH . The term NM from the eq. (18) is reduced with the help
of hierarchical matrix in conjunction with ACA approach. As a practical rule of
thumbs for current PC systems (in this case Pentium iii, 1 GHz, 2 Gb RAM), if the
model under analysis is fairly complex, the only way to solve it within reasonable
memory space is to read the corresponding entries from the initial matrix A block
by block. In this case, the memory capacity can be reduced up to:

NST =
NRK∑
i=1

ki(ni + mi) +
NF∑
i=1

nimi (19)

However, the CPU time TCPU increases according to:

TCPU = NB(TS + TR + TP ) (20)

where NB is the number of blocks to be read, TS is the time required to find the
data in a file, TR is a time needed to access the data and TP is a CPU time to
process the entry. If the number of blocks NB is too high, the total CPU time TCPU

increases dramatically due to the fact that the time to find a corresponding entry in
the original matrix increases non-linearly even for advanced searching techniques.
On the other hand, if NB is small, the CPU time is reasonable but the algorithm
risks to go beyond the memory limits as the storage requirement for each block
needed to be read is O(N2). As an example, if the whole previously assembled
matrix has to be read, the model consisting of nearly 12 000 degrees of freedom
needs about 1.3 Gb of RAM according to (18) and about 1 hour to be assembled.
However, if it is read block by block, the total memory capacity needed for storing
the AH matrix is just about 200 Mb and takes about 3 hours to be assembled.

Another way to overcome the problem with the memory requirement mentioned
above is to use the ACA within the computation of the coefficients of H-matrix
AH . In this case, the method does not need to store any additional information and
can compute the coefficients on the fly. The storage requirement for this approach
is as shown in the eq. (19). The total CPU time can be evaluated as follows:

TCPU = NB(TC + TP ) (21)

where TC is a CPU time to compute the entries which is much less than the time
to find the needed entry in a file when the large scale models are involved. For
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example, the model with nearly 12 000 degrees of freedom took about 3 hours to
be assembled (on a Pentium iii, 1 Ghz, 2 Gb RAM) reading the coefficients block
by block, while for the case when the entries are computed on the fly, it takes just
about 20 minutes on the same PC. The memory requirement is same as for the
reading the matrix block by block and for this particular example is about 200 Mb.

The partially-pivoted ACA allows to generate the Rk-blocks on the fly without
storing the intermediate block [1]. Moreover, it does not need to compute all the
entries. Although the partially pivoted ACA is slightly more difficult to implement
in comparison with the fully pivoted version, it works faster as it does not need to
compute all entries of the H-matrix AH beforehand. Instead, it computes directly
the vectors V and U without building the whole intermediate block. As a conclu-
sion, the last method is the most stable and robust one among the analysed in this
section, although less straightforward to adapt in existing BEM codes.

5 Application to low frequency electric fields induced
in human tissues

The developed application has been applied to the problem involving the Laplace
equation with high number of DOF in three dimensions. As an illustrative exam-
ple, this section presents the calculation of the electrostatic field surrounding a
grounded anatomic model of the human body (see Figure 3). In particular, current
densities and electric fields induced in realistic models of the human body standing
in power control room. The model shown in Figure 4 with single domain is meshed
with constant triangular elements yielding nearly 50 000 and 80 000 degrees of
freedom. The outcome of simulation is represented in Figure 5 which shows the
current density distribution over the human body. The results obtained compare
very well with similar models solved in previous work [5]. Table 1 represents

Figure 3: The BEM model under analysis: the potential u = 1 on each cable, the
bottom has u = 0 as it is grounded and the normal flux q = 0 everywhere
else as the model is isolated.
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Figure 4: BEM model under analysis.

Figure 5: Normal flux distribution across the human body.

Table 1: Numerical results (Processor: Pentium iii, 1 GHz, 2 Gb RAM).

N NRk NF Nit Eps εACA Mem Tp Ts T

47466 13124 7094 21 10−8 10−4 763 133 54 187

82946 91142 41012 17 10−8 0.005 424 170 34 204

the numerical properties of the ACA-based solver. The following labels are used:
N is the number of DOF, NRk is a number of low-rank blocks in the coefficient
matrix, NF is a number of blocks without approximation, Nit is a number of itera-
tions, Eps in an error of iterative solver (GMRES), εACA is an error of ACA approx-
imation, Mem is a memory capacity in megabytes, Tp is a duration of the precondi-
tioner generation in seconds, Ts is a solution time in seconds and T is a total time in
seconds. The working space to allocate all necessary components can be estimated
as follows: (N ∗100∗8)/(1024∗1024)Mb for temporary array, the preconditioner
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needs about 10% of matrix AH space, i.e. N ∗ 100 ∗ 8/106 + 0.1 ∗ Mem Mb. So,
for the biggest example, the working space is about 105 Mb.

6 Conclusions

An ACA-based solver has been implemented in order to solve linear systems of
equations coming from the collocation BEM. The main advantage of the approach
explained in this paper over other approaches is that it assembles both H and G
BEM matrices within the same coefficient H-matrix AH . An illustrative example
explaining the assembly scheme using a very simple model of the 3D unitary cube
demonstrates the approach in detail. Two different ways of using the ACA-solver
within existing BEM codes have been presented. The advantages and disadvan-
tages of both of them as well as the appropriate estimates are given in the paper.
An 3D example of electrostatic model with more complex geometry has been suc-
cessfully solved using the developed approach.
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