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Abstract

Based on the analytical solution of the induced displacement caused by a 3D angu-
lar dislocation, it is possible to construct closed polygonal loops with constant
Burgers’s vector, from which the stress is derived using linear elasticity in homo-
geneous, isotropic whole- or half-space. In this BEM code, each fault is discretized
as a triangulated mesh, where mixed boundary conditions are prescribed.

Incorporate material heterogeneity is done by using triangulated interfaces made
of dual-elements with prescribed continuity and equilibrium conditions. Each inter-
face and fault can therefore have a complex 3D geometry with no gaps or overlaps
between elements.

We use an iterative solver where the system of equations is decomposed at the
element level, allowing a simple formulation of the boundary conditions for ele-
ments making a fault, and continuity/equilibrium conditions at dual-elements mak-
ing an interface. It is shown that strict diagonal dominance can be achieved only if
continuity and equilibrium conditions, for a given dual-element, are solved simul-
taneously. Using a Gauss-Seidel-like method, we consequently reduce the com-
plexity while automatically taking care of the sparsity of the system. Moreover,
using a Jacobi-like solver, we show that the resolution of the system can simply
be parallelized on multi-core processors. Some comparisons with a 2D analytical
solution and a 2D BEM code are presented.
Keywords: iterative solver, indirect method, heterogeneity, optimization, complex
3D geometry.
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1 Introduction

In structural geology and geophysics, fault slip distributions play an important
role for the induced stress perturbation. This slip distribution depends mainly on
the geometrical configuration and boundary conditions along the faults, the remote
boundary conditions as well as the constitutive behavior of the host rock. In par-
ticular, it was shown that the change in Young’s modulus of the rock can affect the
slip distribution in a non negligible way [1]. Therefore, it appears that heterogene-
ity cannot be ignored.

In 2D, Crouch and Starfield [2] proposed a method to add material heterogene-
ity into the Displacement Discontinuity Method (DDM). In 3D, it is possible to
apply this method using the Okada’s code [3] where fault surfaces are discretized
into planar rectangular elements. However, this formulation necessarily introduces
non-physical gaps and overlaps between adjacent elements which can perturb the
solution [4].

In this paper, we use the analytical solution of an angular-dislocation in elastic,
homogeneous, isotropic whole- or half-space, where the stress is derived using
linear elasticity in homogeneous, isotropic whole- or half-space [5]. A bound-
ary element method is then formulated by discretization of all complex 3D faults
into triangular elements. This BEM code (called Poly3D [6]) is very similar to
DDM [2], in which triangular elements of constant displacement discontinuity are
employed. The advantage compare to Okada’s code is that three-dimensional fault
surfaces more closely approximate curviplanar surfaces and curved tiplines with-
out introducing overlaps or gaps. Such formulation is very well suited to study
faults interaction in 3D, since only faults surfaces have to be discretized (see for
example [7–9] among others).

The addition of heterogeneous and isotropic materials is presented in this paper,
and particularly an iterative method for solving the system is investigated.

2 BEM formulation

The BEM formulation employed here is derived from the analytical solution of an
angular dislocation in 3D elastic whole- or half-space [5]. A triangular dislocation
(or more generally a polygonal dislocation) with constant displacement discontinu-
ity, or Burgers’s vector b, can be constructed [6,10] simply by superposition of six
angular-dislocations (see Fig. 1). Mixed boundary conditions (BC) are prescribed,
and when Neumann BC are specified, we have to solve for the unknown Burgers’s
components. After the system is solved, it is possible to compute anywhere, within
the whole- or half-space, displacement, strain or stress at observation points as a
postprocess.

Incorporate material heterogeneity (or general piecewise inhomogeneous bod-
ies) requires discretizing an interface between two regions of different material
properties into two triangulated meshes, one for each region. These two surfaces
have the particularity to be perfectly coalescent, but with opposite normals (see
Fig. 2). According to [2], continuity conditions on one side and equilibrium
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Figure 1: Construction of a polygonal element. (a) angular-dislocation, (b) a
dislocation-segment made of two angular dislocations, and (c) a
polygonal-element made of five dislocation segments of 10 angular-
dislocations.

Figure 2: A dual-element part of an interface with equilibrium condition for trac-
tions (t1 = −t2) and continuity conditions for displacement (u−

1 = u−
2 )

on the negative side (in global coordinate system).

conditions on the other in element local coordinate system are applied [2] at inter-
faces (Fig. 2). Doing so requires particular attention for two main reasons. First,
since we are in 3D, it is impossible to have two opposite local coordinate systems.
Indeed, if xi denotes the vectors of the first coordinate system (i ∈ [0..2]) and Xi

the second, we have X0 = −x0, X1 = −x1 and X2 = X0×X1 = (−x0)×(−x1) =
x0×x1 = x2 �= −X2 (where×denotes the vector product). Consequently, we have
to express continuity conditions in global coordinate system. The second reason is
that since the displacement is discontinuous when going from one side of an ele-
ment to the other, we have to make sure that U−

ee , the self displacement influence
matrix at the element center on the negative side, is correctly computed. Due to
the machine precision, it is not always guaranteed, and consequently, we force the
element center to be on the negative side by applying an infinitesimal translation
of the center along the reversed normal.

Therefore, equilibrium and continuity conditions can be written in global coor-
dinate system as:




1
τe= − 2

τe

1
u−

e =
2

u−
e

(1)
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where polygonal elements e in region 1 and 2 are perfectly coincident (they are
called dual elements in the remaining of the paper).

A global system of equations is then built, which incorporates both equilibrium,
continuity and boundary conditions:
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(2)

where I and F stands for elements at interfaces and faults respectively. D− and T

represent the displacement influence matrix on the negative side and the traction
influence matrix respectively, both of them in global coordinate system. The two
first rows define the equilibrium and continuity conditions at interfaces, while the
last two represent the classical boundary conditions applied to fault surfaces, and
t0
F represents the initially prescribed traction boundary values for Neumann BC.

3 Iterative solver

In order to reduce the model complexity from O(n3) to O(n2) and to take advan-
tage of the sparsity of the system (Eq. 2), an iterative solver is used.

The Burgers’s vector solution at a regular boundary element e making a fault
surface is given by:

be = T −1
ee

{
t0
e −

∑
f �=e

Tef bf

}
(3)

where Tef denotes the traction influence matrix at the centroid of element e due to
element f .

Computing the solution for a dual-element part of an interface is tricky since we
are dealing with an iterative solver for which the convergence is guaranteed if and
only if the system is strict diagonal dominant [11], i.e. ∀i,∀j �= i, |aii| > |aij|. As
an element e1 and its dual part e2 have the same geometry (only the orientation
changes), Te1e1 and Te2e2 have the same diagonal values, and strict diagonal dom-
inance is not honored (the same apply for D− matrices). Therefore, equilibrium
condition in region R1 and continuity condition in region R2 have to be solved
simultaneously for a given dual-element. This leads to the following coupled ele-
mental system:
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Eqs. (3) and (4) are then solved using a Gauss-Seidel procedure as follow:
while ε > tolerance do

for all element e in region R1
if e is not part of an interface

let t = initial traction vector of e

for all element f in region R1 except e

t = t − Tef bf

end for
Use Eq. (3)
update ε and set b to e

else
let t = 0 and u− = 0
for all element f in region R1 except e

t = t − Tef bf and u− = u− + D−
ef bf

end for
for all element g in region R̄2 except e

t = t − Tegbg and u− = u− − D−
egbg

end for
Use Eq. (4)

update ε and set
1
b to e and

2
b to dual(e)

end if
end for

end while

This algorithm automatically takes care of the sparsity of the system, while allow-
ing large model computation since practically no memory allocation is required.

4 Results

In order to check the validity of the formulation, we first compare the 2D analytical
solution [2] of an annulus (with ν1 = 0.25,G1 = 1) inside a circular hole in a large
plate (ν2 = 0.25,G2 = 0.5) (Fig. 3(b)), with a corresponding 3D model (Fig. 3(a)).
The hole is subjected to an internal pressure of 0.001 Pa, and the computed nor-
malized σ3 and σ1 along the bold lines are compared. In order to avoid boundary
effects, the tubes, defining the annulus and the hole in 2D, are extended far from
the zone of interest, materialized by the squared observation plane (Fig. 3(a)). It
can be seen that the computed values along the bold line in Fig. 3(a) match the
analytical solution.

Comparison with an existing 2D BEM code (Fig. 4) is described in [1]. The
model is composed of a penetrating fault inside an inclusion, and various config-
urations are computed where the ratio of the Young’s modulus in the inclusion to
that of the host material, was set to 1, 0.1 and 10. It is subjected to a uniform remote
unit shear stress σyx of 1 MPa. The corresponding 3D model is composed of two
orthogonal vertical planar surfaces, one for the interface defining the inclusion and
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Figure 3: Comparison with a 2D analytical solution. (a) 3D model configuration,
(b) 2D model, (c) comparison of normalized σ3 (triangles) and σ1 (cir-
cles), where solid lines are for the numerical solutions.

Figure 4: Comparison with a 2D BEM code. (a) 3D model configuration, (b) 2D
model, (c) comparison of the computed dip-slip component onto the fault
(along the bold line in (a) and (b)). Triangles is for E∗/E = 1, circle for
E∗/E = 0.1, and squares for E∗/E = 10.

the other for the penetrating fault. The other five sides of the box inclusion are not
taken into account. The bold lines in Fig. 4(a) and 4(b) represents the x-axis of
Fig. 4(c). Computed dip-slip component are reported onto the Y-axis. Again, the
results match the 2D BEM solutions.

5 Optimizations

Even if this iterative algorithm is in O(n2), it is slower than the direct solver,
since at each iteration and for each element, the influence matrices (traction and
displacement) due to all other elements have to be re-calculated.
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Table 1: Speed comparison (in seconds) for different model sizes, performed on
Intel Xeon 2Ghz with 8 cores running Linux Ubuntu. “LU” is the classical
direct solver of the whole system, “Iter” is the iterative solver with no
memory allocation, “Alloc” is the iterative solver with memory allocation,
and “Thread” is the parallelized version on 2 or 8 threads. Models marked
“x” where stopped before the end.

Model size LU Iter Alloc Thread 2 Thread 8

2200 49 380 9 8 6

4200 466 1018 46 26 8

9000 1145 5600 205 116 32

16000 x x 1200 690 205

5.1 Bufferized elemental matrices

We can highly increase the speed if we store elemental matrices Tef , D−
ef , Teg

and D−
eg from Eqs. (3) and (4) for each element e. Of course, if we reach the

maximum available RAM (Random Access Memory), the remaining matrices have
to be computed “on the fly” in order to avoid memory “swapping”.

Furthermore, since the global system is never constructed nor inverted, there is
no cumulative roundoff error when using elemental matrices with floating preci-
sion (4 bytes) instead double (8 bytes), allowing larger models to be computed.

Table 1 gives some examples of the gain of speed using a direct LU solver and
the iterative solver with and without allocation.

5.2 Parallelization on multi-core processors

The iterative solver allows taking advantage of the new multi-core processors
architecture, by parallelizing the computation onto different threads using the cross-
platform package [12] (where the number of threads k is defined by number of pro-
cessors on the mother board times the number of cores for each processor). At the
beginning, the system is split into k sub-systems (the decomposition technique is
irrelevant), one for each thread. Consequently, k iterative solvers are run in paral-
lel. There is no need to update the communication between each sub-process at the
end of each iteration since they share the same model memory. The only constraint
is to update the new displacement onto the elements at the end of each iteration by
waiting for each thread to finish its job in order to avoid read/write conflicts. This
is simply achieved by using a Jacobi procedure instead of the Gauss-Seidel one.
Table 1 gives an overview of the computation time for k = 2 and k = 8.

6 Conclusions

Indirect BEM techniques appear to be an advantageous way of modeling stress
perturbation around faulted area in whole- or half-space since only the fault
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surfaces have to be discretized as boundary elements. Implementing material het-
erogeneity requires little effort and the use of an iterative solver have a great impact
in terms of speed for the system resolution and memory consumption. The Jacobi
version of the iterative solver also permits parallelization on multi-core processors
in a simple and efficient way.

Since each dual element generates six unknowns into the system, it is necessary
to reduce the complexity, which is part of our current research.
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