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Abstract

This paper presents a new radial-basis-function (RBF) technique for solving ellip-
tic differential equations (DEs). Integrated RBF networks (IRBFN) are constructed
to satisfy (a) the boundary conditions in a local sense using the point-collocation
formulation, and (b) the DE in a global sense using the Galerkin formulation.
Several numerical examples are presented to demonstrate the attractiveness of the
present implementation.
Keywords: integrated RBFs, Galerkin formulation, Neumann boundary conditions,
multiple boundary conditions, domain decomposition.

1 Introduction

Many discretisation techniques can be viewed as variants of the method of
weighted residuals that can be stated in three well-known formulations, namely
the strong, weak and inverse statements [1]. By means of weighting functions in
a statement, the residuals for the DE and boundary conditions are made small in
some senses. Two popular ways used are (i) the point-collocation approach, where
the residuals are zero at certain points and (ii) the Galerkin-type approach, in which
the residuals are zero in the mean. Each approach has some advantages in certain
areas of application. The former is cost-effective as no integrations are required,
while the latter has a smoothing capability owing to its integral nature.

RBF collocation methods are considered as a powerful tool for the interpolation
of scattered data as well as for the solution of differential problems [2]. The meth-
ods are capable of approximating arbitrarily-well continuous functions. A number
of RBFs such as multiquadric and Gaussian functions have spectral approximation
power. However, the condition number of the RBF interpolation matrix also grows
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rapidly with respect to (a) the decrease in distance between the RBF centres and
(b) the increase in the RBF width. RBF collocation methods thus, in practice, suffer
from a trade-off between accuracy and stability. Moreover, there is a gap in accu-
racy between the RBF solutions to Neumann- and Dirichlet-type boundary-value
problems. To improve the numerical stability of a RBF solution, there have been a
number of schemes proposed in the literature: for example, (a) preconditioning the
system matrix; (b) constructing the approximations locally; (c) using compactly-
supported RBFs; and (d) employment of domain decompositions. Recently, an
approximation scheme, which is based on point collocation, Cartesian grids and
one-dimensional IRBFNs, has been proposed in [3, 4]. A problem domain, which
can be regular or irregular, is discretised by a Cartesian grid. Along grid lines,
1D-IRBFNs are constructed to satisfy the governing DE together with boundary
conditions in an exact manner. This scheme allows a larger number of nodes to be
employed.

There are very few papers on the use of RBFs in the context of Galerkin approx-
imation [2]. In this study, we present a new numerical scheme, which is based
on the Galerkin formulation and 1D-IRBFNs, for solving elliptic problems. From
a Galerkin-approach point of view, it will be shown that the present derivative
boundary conditions are imposed in an exact manner. From a RBF-approach point
of view, it will be shown that (a) the proposed method is able to yield almost the
same levels of accuracy for the solutions of Neumann- and Dirichlet-type problems
and that (b) its accuracy is considerably better that of the 1D-IRBFN collocation
method. An additional attractiveness of the proposed technique is that it facilitates
a higher-order continuity of the solution across the subdomain interfaces.

The paper is organised as follows. Brief reviews of the Galerkin formulation
and 1D-IRBFNs are given in Sections 2 and 3, respectively. The Galerkin 1D-
IRBFN method is presented in Section 4, followed by several numerical examples
in Section 5. Section 6 concludes the paper.

2 Galerkin approach

The Galerkin-type approach is well documented in the literature (e.g. [1]). A brief
review of this approach is given below.

Consider a boundary-value problem defined by a linear DE and its boundary
conditions

L(ū) = 0, x ∈ �, B(ū) = 0, x ∈ �, (1)

where ū is the field/dependent variable (the overbar denotes the exact solution), L

and B prescribed known operators, � the domain of interest and � the boundaries
of the domain �.

An approximate solution, denoted by u, to (1) can be sought in the form

ū(x) ≈ u(x) =
N∑

i=1

αiφi(x), (2)
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where {αi}Ni=1 is the set of unknown coefficients and {φi(x)}Ni=1 the set of linearly-
independent functions. The terms φi are usually referred to as the trial/basis/
approximating functions. Assume that a function u is constructed to satisfy the
DE at every point on the domain �, it leads to∫

�

wL(u)d� = 0, (3)

for any function w that is bounded on �. Similarly, assume that the approximate
solution u also satisfies the boundary conditions, it follows that∫

�

w̃B(u)d� = 0, (4)

for any bounded function w̃. The functions w and w̃ are often referred to as the
weighting/test functions. It can be seen that the system defined by (1) is equivalent
to the following integral statement∫

�

wL(u)d� +
∫

�

w̃B(u)d� = 0, (5)

that is satisfied for all bounded functions w and w̃.
If the weighting functions w and w̃ have sufficient degrees of continuity, inte-

grations by parts can be applied to derivative terms in (5), leading to other integral
statements, namely the weak and inverse forms, that can be expressed as∫

�

C(w)D(u)d� +
∫

�

E(w̃)F (u)d� = 0, (6)

where the order of continuity required for the u solution is reduced. One can thus
use either (5) or (6) to determine the approximate solution u. For the Galerkin-type
approach, the weighting functions are chosen from the same set of functions as the
trial functions.

3 One-dimensional integrated RBFNs

Consider a univariate function f (x). The basic idea of the integral RBF scheme
[3, 4] is to decompose a pth-order derivative of the function f into RBFs

dpf (x)

dxp
=

N∑
i=1

wigi(x) =
N∑

i=1

wiI
(p)
i (x), (7)

where {wi}Ni=1 is the set of network weights, and {gi(x)}Ni=1 ≡ {I (p)

i (x)}Ni=1 the set
of RBFs. Lower-order derivatives and the function itself are then obtained through
integration

dp−1f (x)

dxp−1
=

N∑
i=1

wiI
(p−1)
i (x) + c1, . . . , (8)

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXX  171



f (x) =
N∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p − 1)! + c2
xp−2

(p − 2)! + · · · + cp−1x + cp, (9)

where I
(p−1)

i (x) = ∫
I

(p)

i (x)dx, . . . , I
(0)
i (x) = ∫

I
(1)
i (x)dx, and {c1, c2, . . . , cp}

are the constants of integration.
Unlike conventional differential schemes, the starting point of the integral

scheme can vary in use, depending on the particular application under consider-
ation. The scheme is said to be of order p, denoted by IRBFN-p, if the pth-order
derivative is taken as the starting point.

Evaluation of (7)–(9) at a set of collocation points {xj }Nj=1 leads to

d̂pf

dxp
= Î(p)

[p] α̂, . . . , f̂ = Î(0)
[p]α̂,

where the subscript [.] and superscript (.) are used to denote the order of IRBFN
and the order of the corresponding derivative function, respectively;

Î(p)

[p] =


I

(p)

1 (x1), . . . , I
(p)
N (x1), 0, 0, . . . , 0, 0

I
(p)

1 (x2), , . . . , I
(p)

N (x2), 0, 0, . . . , 0, 0

· · · · · · · · · · · · · · · · · · · · · · · ·
I

(p)

1 (xN), . . . , I
(p)

N (xN), 0, 0, · · · , 0, 0

 , . . .

Î(0)
[p] =


I

(0)
1 (x1), . . . , I

(0)
N (x1),

x
p−1
1

(p−1)! ,
x

p−2
1

(p−2)! , . . . , x1, 1

I
(0)
1 (x2), . . . , I

(0)
N (x2),

x
p−1
2

(p−1)! ,
x

p−2
2

(p−2)! , . . . , x2, 1

· · · · · · · · · · · · · · · · · · · · · · · ·
I

(0)
1 (xN), . . . , I

(0)
N (xN),

x
p−1
N

(p−1)! ,
x

p−2
N

(p−2)! , . . . , xN , 1

 ;

α̂ = (w1, w2, . . . , wN, c1, c2, . . . , cp)T ;

and

d̂kf

dxk
=
(

dkf1

dxk
,
dkf2

dxk
, . . . ,

dkfN

dxk

)T

, f̂ = (f1, f2, . . . , fN )T ,

in which dkfj /dxk = dkf (xj )/dxk and fj = f (xj ) with k = {1, 2, . . . , p} and
j = {1, 2, . . . , N}.

4 Galerkin IRBFN technique

For Galerkin finite-element techniques, a weak statement (6), where the continu-
ity requirement for the field variable u is reduced, is a preferred option. Piecewise
polynomials of low order such as linear and quadratic interpolations are generally
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used as approximating and weighting functions in numerous small subdomains
called elements. In the case that the shape functions ϕi are algebraic polynomi-
als, only the field variable changes continuously throughout the entire domain, and
high derivatives (e.g. second derivatives for linear elements) are not defined. Essen-
tial boundary conditions are incorporated into the approximate solution prior to the
process of discretising the DE, while natural boundary conditions are imposed by
means of weighted residual (i.e. the second term in (6)). It should be emphasised
that the natural boundary conditions in the weak formulation are approximated
rather than identically satisfied. In engineering practice, such a partial satisfaction
of the boundary conditions tends to give poor results for surface fluxes or tractions
which make the overall results unreliable for many cases [1].

In the present Galerkin 1D-IRBFN technique, we use a Cartesian grid to gen-
erate the finite trial and test spaces. One dimensional IRBFNs are employed to
represent the field variable and its derivatives on grid lines. The RBF solutions are
constructed to satisfy the boundary conditions using the point-collocation approx-
imation and the governing DE using the Galerkin approximation. A distinguishing
feature here is that the networks are sought to satisfy a priori the derivative bound-
ary conditions in an exact manner. There is thus no need to use the second term
in (5) and (6). As the trial functions are infinitely-differentiable global functions,
the present Galerkin 1D-IRBFN technique permits the employment of (5) to solve
the differential problem of any order. Moreover, any derivative of the field variable
is defined and continuous throughout the entire domain.

From an engineering viewpoint, one would prefer to work in the physical space.
The present approximate solution is sought in terms of nodal variable values rather
than the usual network weights. The boundary conditions including derivative
information are imposed through the conversion process of the network-weight
space into the physical space. RBFNs involve two types of data sets, namely
centre and collocation points. In the context of point-collocation approximation,
RBFNs tend to result in the most accurate approximations when the two sets of
points are identical. Here, the collocation points are chosen to be the centres them-
selves. Unlike conventional differential formulations, the integral RBF formula-
tion has the ability to generate additional coefficients (the constants of integra-
tion). This feature thus facilitates the addition of extra equations to the conver-
sion system to represent extra information such as the natural boundary condi-
tions and even the governing equation at the boundary points. The presence of
integration constants thus guarantees that all RBFs are used for function approx-
imation. In contrast, for conventional differentiated RBFNs, the enforcement of
derivative function values is done at the price of the non-consideration of the func-
tion at some RBF centres, which significantly deteriorates the accuracy of the RBF
scheme.

Consider a grid line. The conversion system for an 1D-IRBFN scheme of order
p can be described as (

û

ê

)
=
[
Î(0)

[p]
K̂

]
α̂ = Cα̂, (10)
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where ê, whose length can be up to p, is a vector representing extra informa-
tion (e.g. normal derivative boundary conditions); ê = K̂α̂; û and Î(0)

[p] defined as
before; and C the conversion matrix. It can be seen from (10) that the approximate
solution u is collocated at the whole set of centres. Solving (10) for α̂ yields

α̂ = C−1

(
û

ê

)
, (11)

where C−1 is the inverse or pseudo-inverse of C, depending on its dimension. Sub-
stitution of (11) into (7)–(9) leads to

u(x) = (I
(0)
1 (x), I

(0)
2 (x), . . .)C−1

(
û

ê

)
, (12)

· · · · · · · · · · · · · · · · · · · · · · · ·
∂pu(x)

∂xp
= (I

(p)

1 (x), I
(p)

2 (x), . . .)C−1

(
û

ê

)
. (13)

They can be rewritten in the form

u(x) =
N∑

i=1

ϕi(x)ui + ϕN+1(x)e1 + ϕN+2(x)e2 + · · · , (14)

· · · · · · · · · · · · · · · · · · · · · · · ·
∂pu(x)

∂xp
=

N∑
i=1

dpϕi(x)

dxp
ui + dpϕN+1(x)

dxp
e1 + dpϕN+2(x)

dxp
e2 + · · · . (15)

The Galerkin weighting process applied to (1) produces the results∫
�

ϕiL(u) = 0, (16)

where the values of i depend on the problem under consideration as will be dis-
cussed later. The system of equations, (16), can then be used to solve for the nodal
value of the variable u.

5 Numerical results

Due to space limitation, only numerical results for second- and fourth-order ODEs
are presented here. An ODE of order p is discretised by the 1D-IRBFN-p scheme
using multiquadrics (MQ). To generate finite spaces for the trial and test functions,
uniformly-distributed MQ centres are employed. The MQ width is simply chosen
to be the centre spacing. A 1D-IRBFN-based collocation method is also employed
to provide a useful basis for comparison. The accuracy of an approximate solution
is measured by means of the discrete relative L2 norm, denoted by Ne.
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5.1 Second-order ODE

Find an approximate solution to the ODE

d2ū

dx2 + ū + x = 0, (17)

on the interval 0 ≤ x ≤ 1. The exact solution of (17) is assumed to be ū =
sin(x)/ sin(1) − x, from which one can easily derive the boundary values at x = 0
and x = 1. We employ 45 sets of uniformly-distributed centres, varying from 3
to 91 with increment of 2. Two types of boundary conditions are considered.

Dirichlet boundary conditions: Both K and ê are set to null. An approximate
solution simply takes the form u(x) = ∑N

i=1 uiϕi(x). The weighting functions
are chosen to be the trial functions that are associated with the unknown nodal
values of u. For this case, they are {ϕ2(x), . . . , ϕN−1(x)}. Equation (16) leads to
a determinate symmetric system of equations A for (N − 2) unknowns (i.e. the
values of u at the interior points). It can be seen from Figure 1 (left) that the
Galerkin technique yields much more accurate results and converges faster than
the collocation technique.

Dirichlet (x = 0) and Neumann (x = 1) boundary conditions: We employ one
extra equation to represent the derivative value at x = 1. Expression (14) becomes
u(x) = ∑N

i=1 uiϕi(x) + (duN/dx)ϕN+1(x) that also contains derivative informa-
tion. The approximate solution thus satisfy a priori both the Dirichlet and Neu-
mann boundary conditions in an exact manner. The unknown vector consists of
the values of u at {xj }Nj=2. As a result, {ϕ2(x), . . . , ϕN(x)} are taken as the weight-
ing functions. Again, the Galerkin approach outperforms the collocation approach
regarding accuracy (Figure 1 (right)).
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Figure 1: Second-order ODE: Error Ne(u) versus the centre spacing h for the
Galerkin and collocation solutions. For Dirichlet conditions (left), they
converge as O(h3.46) and O(h2.96), respectively. For Neumann condi-
tions (right), they are O(h3.54) and O(h1.98).
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It has been generally observed that the RBF results for the case of Neumann
boundary conditions are generally much less accurate than for the case of Dirichlet
boundary conditions. An attractive point here is that the present RBF method yields
essentially the same degrees of accuracy for both types of boundary conditions
(Figure 1). For both cases, values of the matrix condition number are relatively
low, varying from O(101) to O(104).

5.2 Fourth-order ODE

This example is governed by the biharmonic equation

d4ū

dx4
+ d2ū

dx2
+ (4k3 − 2k) cos(kx) − x(k4 − k2) sin(kx) = 0, (18)

on the interval −1/2 ≤ x ≤ +1/2, and Dirichlet boundary conditions. The exact
solution to this problem is chosen to be ū = x sin(kx). We employ k = 7π/2
that makes all boundary data nonzero. The present conversion process involves the
enforcement of u at the whole set of centres and du/dx at the two boundary points,
from which the approximate solution will take the form u(x) = ∑N

i=1 uiϕi(x) +
(du1/dx) ϕN+1(x) + (duN/dx) ϕN+2(x). The system matrix for solving {ui}N−1

i=2
is then generated using the weighting functions {ϕ2(x), . . . , ϕN−1(x)}. A num-
ber of uniform centre sets, namely 5, 7, 9, . . . , 45 points, are employed. Figure 2
shows that the accuracy of the Galerkin method is far superior to that of the col-
location method. The present Galerkin matrices have the condition number of
O(101) to O(105).

5.3 Domain decomposition

The most time-consuming part of the proposed technique lies in the process of
computing volume integrals to form the algebraic system. One strategy to over-
come this problem is to use domain decomposition. A substructuring technique
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Figure 2: Fourth-order ODE: Ne(u) versus h for the Galerkin and collocation solu-
tions. They converge as O(h6.31) and O(h4.24), respectively.
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Figure 3: Domain decomposition, 11 subdomains: Errors of the present C1 and C2

Galerkin solutions.

will be applied here. The interface system can be constructed by requiring conti-
nuity of the field variable and its derivatives of order up to (p − 1) (p−the order
of the DE) across the subdomain interfaces.

The combination of the substructuring technique and the proposed method that
is presented above will lead to an approximate solution u that is a C1 function for
second-order problems and C3 for fourth-order problems.

However, as shown in [5], a Cp solution can be achieved if the DE is enforced to
be satisfied at the interface points in the subdomain solutions. This satisfaction can
be made through the transformation of the network-weight space into the physical
space.

Two versions of the present multidomain Galerkin technique are applied to the
following ODE

d2ū

dx2 + dū

dx
+ ū = − exp(−5x)[9979 sin(100x) + 900 cos(100x)], 0 ≤ x ≤ 1,

(19)
with Dirichlet boundary conditions. The exact solution is chosen to be ū(x) =
sin(100x) exp(−5x), which is highly oscillatory. The domain is partitioned into 11
subdomains that are then identically represented using grids of {3, 5, . . . , 91} uni-
form points. Figure 3 clearly shows that the present C2 solution is, as expected,
more stable and accurate than the C1 solution.

6 Concluding remarks

In this paper, a numerical technique, based on 1D-IRBFNs and Galerkin approxi-
mation, is developed for solving elliptic differential equations. In contrast to
Galerkin finite-element techniques, the Neumann boundary conditions are
presently imposed in an exact manner. Unlike conventional RBF techniques, the
RBF approximations are presently constructed locally on grid lines through inte-
gration and they are expressed in terms of nodal variable values. The proposed
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technique produces a system of algebraic equations that is often symmetric and
has a relatively-low matrix condition number. To avoid the problem of high cost
associated with the evaluation of volume integrals, the use of domain decomposi-
tion is discussed, where continuity order can be improved. Numerical results have
shown that (a) the present technique achieves a high rate of convergence, (b) its
accuracy is much higher than that of the integrated-RBF collocation technique,
and (c) the obtained solutions have similar levels of accuracy for both Dirichlet-
and Neumann-type boundary-value problems.
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