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Abstract 

This paper describes an application of the recently proposed Modified Method of 
Fundamental Solutions (MMFS) to potential flow problems. The solution in two 
dimensional Cartesian coordinates is represented in terms of the double layer 
fundamental solution of the Laplace equation. The collocation is used for 
determination of the expansion coefficients. This novel method does not require 
a fictitious boundary unlike the conventional Method of Fundamental Solutions 
(MFS). The source and collocation points thus coincide on the physical boundary 
of the system. The desingularised value of the fundamental solution is in case of 
the coincidence of the collocation and source points determined from the 
respective integral equations logic. The values of the derivatives of the double 
layer fundamental solution in the coordinate directions, as required in potential 
flow calculations, are calculated indirectly from the considerations of the 
constant potential field. A numerical example of potential flow around the two 
dimensional circular region is shown. The results with the MMFS are compared 
with the results of the classical single layer MFS with an artificial boundary, and 
the analytical solution. It is shown that the MMFS gives better accuracy of the 
velocity components as compared with the classical MFS. 
Keywords: potential flow, method of fundamental solutions, desingularisation, 
double layer potential. 

1 Introduction 

In recent years there has been strong development in mesh reduction methods 
in which the polygon-like meshes are reduced or avoided. The MFS is a 
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numerical technique that falls into the class of methods generally called 
boundary methods. The other well known representative of these methods is 
the Boundary Element Method (BEM) [1]. Both methods are best applicable in 
situations where a fundamental solution to the partial differential equation in 
question is known. In such cases, the dimensionality of the discretization is 
reduced. BEM for example requires polygonisation of the boundary surfaces in 
general 3D cases, and boundary curves in general 2D cases. This method 
requires solution of the complicated regular, weakly singular, strongly 
singular, and hypersingular integrals over boundary segments, which is usually 
a cumbersome and non-trivial task. The MFS has certain advantages over 
BEM, which are mostly visible in the fact that only pointisation of the 
boundary is needed, completely avoiding any integral evaluations, and making 
no principal difference in coding between the 2D and the 3D cases. A 
comprehensive survey of the MFS and related methods for elliptic boundary 
value problems can be found in [2–4]. In the present paper, the potential flow 
problem, previously solved by the least squares version of MFS [5] and 
collocation version of MFS [6] is solved by the MMFS. This novel method, 
which essentially represents a sort of blend between BEM and MFS, was 
originally developed by Young et al. [7] using collocation with the double 
layer Laplace equation fundamental solution. The method has been further 
extended to the single-layer Laplace equation fundamental solution in [8]. The 
main drawback of the MFS is representation of positions of the source points 
that need to be positioned outside the boundary. In cases where they are too 
close to the boundary, the solution is not accurate. In cases where they are too 
far away from the boundary, the discretisation matrix becomes ill conditioned. 
The novel MMFS overcomes this difficulty by allowing the source point 
positions to coincide with the collocation points on the physical boundary. A 
desingularisation technique thus has to be employed in order to be able to 
allow bounded values in the discretisation matrix. The desingularisation has 
been derived through the properties of the double layer potential in [7] and 
through the indirect BEM formulation in [8]. In the present paper, the 
desingularisation is extended to the calculation of the desingularised values 
through the direct BEM approach, as well as calculation of the desingularised 
value of the partial (not normal) derivatives on the boundary, which was not 
the case in the previous two cited MMFS pioneering papers by D. L. Young’s 
group. 

2 Governing equations 

Consider a connected two-dimensional domain Ω  with boundary Γ . The 
domain is filled by a fluid that undergoes potential flow. The boundary is divided 
into the part EΓ , which represents the external boundaries of the system and into 
the part IΓ , which represents the internal boundary of the system i.e. 

E IΓ = Γ ∪Γ . The potential Φ  is governed by the following boundary value 
problem: Laplace equation 

2 0∇ Φ = ,                                                     (1) 

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

160  Boundary Elements and Other Mesh Reduction Methods XXX



and boundary conditions of the Dirichlet and Neumann type, located at the 
Dirichlet DΓ  and Neumann NΓ  parts of the boundary Γ , i.e. D NΓ = Γ ∪Γ  

( ) ( ) ,D DΦ =Φ ∈Γp p p ,    ( ) ( ) ,N N

Γ

∂Φ
= Φ ∈Γ

∂
p p p

n
,             (2,3) 

with p  standing for the position vector and Γn  for the outward normal on the 
boundary Γ . DΦ  and NΦ  representing the Dirichlet and Neumann boundary 
condition forcing functions. Let us introduce a two dimensional Cartesian 
coordinate system with ortho-normal base vectors xi  and yi  and coordinates xp  
and yp , i.e. x x y yp p= +p i i . The potential field velocity components are 
calculated from the potential Φ  as 

( ) ( ); ,v x y
pξ
ξ

ξ∂Φ
= =
∂

p p .                                     (4) 

     It is the purpose of this paper to determine the steady state potential flow 
components as a function of the posed geometry, governing equation and 
boundary conditions. 

3 Solution procedure 

3.1 Solution of the potential flow 

The common points of the MFS and MMFS for solution of the potential flow 
field are elaborated first. The differences are elaborated afterwards. The solution 
of the potential Φ  is represented by the NΓ  global approximation functions 

( )nψ p  and their coefficients nα  

( ) ( )
1

N

n n
n

ψ α
Γ

=

Φ ≈ ∑p p .                                       (5) 

The global approximation functions have the property 

( ) ( )
2 0;

; 1, 2,...,
;

n
n

n n

n Nψ
δ Γ

≠
∇ = = =

p p
p

p p p
,                         (6) 

i.e., they are fundamental solutions of the Laplace operator. δ  denotes the 
Kronecker symbol. For two dimensional problems in Cartesian coordinates, the 
fundamental solution equals to 

( ) ( ) ( )
*

* 21 log ; ,
2n n n n n n x nx x y ny y

n

r r p s p s
r

ψ
π

= = ⋅ = − = − + −p r r r p s i i ,    (7) 

where *r  denotes the reference radius and 0xp  and 0yp  represent the mean 
coordinates of the Γ∪Ω . The double layer fundamental solution, defined by 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

*

2 22 2

1
2

y ny syx nx sx
n

s x nx y ny x nx y ny

p s np s n

p s p s p s p s

ψψ
π

◊
 −−∂  = = +
 ∂ − + − − + − 

p p
n

  (8) 
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is used in the present paper. Let us introduce the boundary condition indicators 
in order to be able to represent the boundary collocation equations in a compact 
form. The Dirichlet Dχ  and Neumann Nχ  type of boundary conditions 
indicators are 

( ) 1;
0;

D
D

Dχ
 ∈Γ

= 
∉Γ

p
p

p
,    ( ) 1;

0;

N
N

Nχ
 ∈Γ

= 
∉Γ

p
p

p
.                         (9,10) 

     The coefficients are calculated from a system of NΓ  algebraic equations 

1
; 1, 2,...,

N

jn n j
n

b j Nα
Γ

Γ
=

Ψ = =∑ .                                    (11) 

( ) ( ) ( ) ( )D N n
jn j n j j j

ψ
χ ψ χ

Γ

∂
Ψ = +

∂
p p p p

n
,                       (12) 

( ) ( ) ( ) ( )
N

D D N
j j j j jb χ χ

Γ

∂Φ
= Φ +

∂
p p p p

n
,                        (13) 

     The coefficients nα  can be expressed through inversion of the system (10), 
which gives 

( ) ( ) ( ) ( )1

1
; 1, 2,...,

N
D D N N

n nj j j j j
j

n Nα χ χ
Γ

−
Γ

=

 = Ψ Φ + Φ = ∑ p p p p .      (14) 

The velocity field components are calculated as 

( ) ( )
1

; ,
N

n
n

j

v x y
pξ
ξ

ψ
α ξ

Γ

=

∂
= =

∂∑p p .                               (15) 

3.2 Classical method of fundamental solutions 

The fundamental solution source points are located outside physical boundary, 
i.e. j j≠p s  and j ∉Ωs  in the classical MFS. One can consider that they form an 
artificial boundary. The proper location of the source points is not a trivial task. 
It can be observed that the accuracy improves with the increasing distance from 
the physical boundary up to some extent. However, the collocation matrices 
become increasingly ill conditioned with increased distance from the boundary. 
The explicit form of the partial derivatives of the fundamental solution are 

( )
( )( )
( ) ( )

( ) ( )
( )( )

( ) ( )

222

2 22 22

1

21 1
2

x nx y ny sy

x
x nx y ny

x nx x nx
sx

x nx y ny x nx y ny

p s p s n
p p s p s

p s p s
n

p s p s p s p s

ψ
π

π

◊ − −∂
= −

∂  − + −  
 
 − −

+ − 
 − + − − + −    

p

        (16) 
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( ) ( )( )

( ) ( )

( ) ( )
( )( )

( ) ( )
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p

        (17) 

3.3 Modified method of fundamental solutions 

The key point of the modified method of fundamental solutions represents 
desingularisation of the value of the fundamental solution, because in this case 
the source and the collocation points coincide, i.e. j j=p s . The desingularisation 
value can be directly set from the 

( ) ( )* * 0d d cψ ψ
Γ Γ
Φ∇ ⋅ − ∇Φ ⋅ + Φ =∫ ∫Γ Γ s s .                      (18) 

     The derivation of the upper equation with respect to sn  gives 

( ) ( ) 0
s

d d cψ ψ◊ ◊

Γ Γ

∂Φ
Φ∇ ⋅ − ∇Φ ⋅ + =

∂∫ ∫Γ Γ s s
n

.                    (19) 

In case of the constant potential Φ , the equation (18) reduces to 
( ) ( ) ( ) ( )* 0d c d cψ ψ ◊

Γ Γ
Φ∇ ⋅ + Φ = − Φ Γ + Φ =∫ ∫Γ s s s s ,            (20) 

and the equation (19) into 
0dψ ◊

Γ
∇ ⋅ =∫ Γ .                                           (21) 

     The calculation of the desingularised value of the double layer fundamental 
solution can be performed through the discretisation of the Equation (20) in the 
following simple way 

( ) ( )
1

0
2

N
n n

j n s j
n

cψ
Γ

◊− +

=

+
− + =∑ p s ,                              (22) 

( ) ( ) ( )
1

1 1
N

j j n n j n
nj j
n j

ψ ψ
Γ

◊ ◊
− +

=− +
≠

 
 = − + +
  
∑p p .                       (23) 

     The calculation of the desingularised value of the double layer fundamental 
solution normal derivative can be performed through the discretisation of the 
Equation (21) in the following simple way 

( )
1

0
2

N
n n n

j
n

ψΓ ◊
− +

= Γ

+ ∂
=

∂∑ p
n

,                                       (24) 

( ) ( ) ( )
1

1 N
j j

j n n j
nj j
n j

ψ ψΓ
◊ ◊

− +
=Γ − + Γ
≠

 ∂ ∂ = − + ∂ + ∂
  
∑p p

n n
.                    (25) 
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     The internal and external boundaries are given by a vector of points 
; 1,2,..., ; ,B

k k N B I EΓ= =p . The length k  of the contour between the boundary 
points kp  and k-1p  is parametrised by the simple Euclidean distance 

( ) ( )
1/ 222

1 1k kx k x ky k yp p p p± ± ±
 = − + −  

,                        (26) 

with the cyclic index conditions 1 ; 1Bk N kΓ− = = , 1 1; Bk k NΓ+ = = . The total 
Euclidean length Γ  of the boundary contour equals to  

1

BN

k
k

Γ

Γ
=

= ∑ .                                                   (27) 

     The derivatives of the fundamental solution can be calculated in the following 
indirect way. Let us assume a pure Dirichlet problem with all the boundary 
values set to a constant ( ) ;D cΦ = ∈Γp p . We obtain in this case 

( ) ( )
1

N
c

j n j n
n

c ψ α
Γ

=

Φ = = ∑p p ,                                     (28) 

( ) ( )
1

0; ,
N

c
j n j n

n
x y

p pξ ξ

ψ α ξ
Γ

=

∂ ∂
Φ = = =

∂ ∂∑p p .                   (29) 

     The desingularised value of the partial derivative can be calculated as 

( ) ( )
1

1 ; ,
N

c
j j n j nc

nj
n j

x y
p pξ ξ

ψ ψ α ξ
α

Γ
◊ ◊

=
≠

∂ ∂
= − =

∂ ∂∑p p .                     (30) 

     The desingularised value of the normal derivative can be calculated from the 
desingularised values of the partial derivatives as 

( ) ( ) ( ) ( ) ( )j
j j j x j j j y j

x y

n n
p p

ψ
ψ ψ

◊
◊ ◊

Γ

∂ ∂ ∂
= +

∂ ∂ ∂
p p p p p

n
.                 (31) 

     This represents an alternative way how to arrive to Equation (25). The present 
approach does not require a direct integration, which distinguishes it from the 
approach with the single layer fundamental solution [9] where a direct BEM-like 
integration is needed. 

4 Numerical example 

Potential flow arround a circle is considered for a numerical example. The flow 
is confined to a square (exterior) region EΓ , x x xp p p− +≤ ≤ , y y yp p p− +≤ ≤  with 

0x xp p p+ −= − = , 0y yp p p+ −= − = . The Dirichlet boundary conditions are defined 
at the square boundaries as 

( ) 0, ; ,D
x y y x x y yp p v p p p p p± ±Φ = = = .                             (32) 

The potential field, defined from the boundary conditions (32) gives the 
following solution for the velocity field 

0 0xv = ,    0 0yv v= .                                          (33,34) 
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A circular hole IΓ  (internal boundary) with the radius 0r , centered around point 

cp  with coordinates ( ) / 2cx x xp p p+ −= + , ( ) / 2cy y yp p p+ −= +  with the Neumann 
boundary conditions 

( ) ( ), 0;N I I I
x yp p Φ Γ Γ = ∈Γ  p .                               (35) 

is inserted into the square. The solution of the potential field for 0 0r p  equals  

( )
( ) ( )

2
0

ana 0 22
1y y cy

x cx y cy

r
v p p

p p p p

 
 Φ = − +
 − + − 

,                  (36) 

with 0 yv  defined from equation (46). The respective analytical solution for the 
velocity field is 

( )( )
( ) ( )

2
0 0

ana 0 22

2 y x cx y cy
x x

x cx y cy

v r p p p p
v v

p p p p

− −
= −

− + −
                            (37) 

( ) ( )
( )

( ) ( )

222
0 00

ana 0 2 22 2

2
1 y y cy

y x

x cx y cy x cx y cy

v r p pr
v v

p p p p p p p p

  −
 = + −
 − + − − + − 

    (38) 

     We set 0 0,1mr = , 0 0,5mp =  for geometry. The square sides are virtually 
divided into 50 equal length segments and the collocation points are put at each 
of the segment centres. The total number of discretisation points on the external 
boundary is set to 200EN = . The circle is discretised by five different 
discretisations 8,16,32,64,128IN = . The Root Mean Square (RMS) error of the 
MMFS solution is defined as 

( ) ( )
1/ 2

2
rms ana

1

1IN

n nI
n N=

 Φ = Φ −Φ    
∑ p p ,                         (39) 

( ) ( )
1/ 2

2

rms ana
1

1 ; ,
IN

n nI
n

v v v x y
Nξ ξ ξ ξ

=

  = − =   
∑ p p ,                   (40) 

( )1/ 22 2
rms rms rmsx yv v v= + .                                        (41) 

     The RMS errors of the potential, velocity components, and absolute value of 
velocity are in case of MMFS given in Table 1 as a function of the discretisation 
density IN . One can observe monotone convergence of the results with finer 
discretisation. A comparison with the results of the MFS (with artificial 
boundary), based on the single layer fundamental solution of the Laplace quation 
(the results are tabulated in [9]) shows, that the potential is in the case of MFS 
calculated more accurately as in the case of MMFS for 8,16IN = . The velocity 
components and absolute value of velocity are better predicted by the present 
MMFS than in the classical MFS in all attempted discretisations. 
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5 Conclusions 

In recent years, the MFS has proved to be an effective alternative to the 
boundary element methods in specific problems. Due to its advantages with 
respect to the simplicity of formulation and the fact that the distribution of the 
calculation nodes is truly meshless, the method is an ideal candidate for the 
moving and free boundary problems. Its main drawback represents the “artificial 
boundary issue”. This issue has been in this work overcome through the MMFS 
concept, based on the double layer fundamental solution. The desingularisation 
of the potential has been in the present work made through the direct integral 
equation concept. The desingularisation of the spatial derivatives has been made 
in an indirect way through the constant potential field concept. Only the 
discretisation nodes on the real boundary are thus required. Both approaches 
differ from the previous two pioneering works on the subject [7,8]. In addition, 
this paper extends the MMFS to potential flow situations. The components of the 
flow field are calculated more precisely with the MMFS as with the MFS at all 

 
 

Figure 1: Calculated potential around the circle. The difference between the 
isopotential lines is 0,02 2m /s . 
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discretisations used. The presented developments can be straightforwardly 
upgraded to axisymmetric problems [10] by inclusion of the axisymmetric 
fundamental solution. The flow physics can be extended to Navier-Stokes flow 
by the strategy, proposed in [11] which uses the dual reciprocity with radial basis 
functions. The axisymmetric radial basis functions, such as thin plate splines [12] 
and multiquadrics [13] can be used for this purpose in axisymmetry. 

Table 1:  Calculated error of the solution as a function of the number of 
collocation points on the circle boundary. 

IN  rmsΦ  rmsxv  rmsyv  rmsv  

8 1.037098E-02 6.825820E-03 1.177813E-02 1.361309E-02 

16 4.277747E-03 6.385956E-03 1.098282E-02 1.270444E-02 

32 1.704762E-03 6.171696E-03 1.063205E-02 1.229351E-02 

64 5.225166E-04 6.069899E-03 1.046481E-02 1.209776E-02 

128 4.806703E-05 6.020260E-03 1.038311E-02 1.200219E-02 
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