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Abstract 

The analytical mould of the solution in the radial direction permits precision 
stress intensity factors to be derived in the scaled boundary finite element 
method, namely, directly from the definition, and consequently no particular 
crack-tip interpretation such as refining the crack-tip mesh or employing singular 
elements, is indispensable. Besides, anisotropic material characteristics can be 
treated effortlessly. In this analysis, the Frobenius approach in the frequency 
domain to the solution of the governing differential equations of the SBFEM is 
used to simulate variable dynamic fracture problems. The complex frequency-
response functions are calculated. Thereafter, the dynamic stress intensity factors 
are squarely taken from the response functions out. That is ensued by a fast 
Fourier transform of the transient load and a later inverse transform to derive the 
time history of DSIFs.  
     A mixed-mode crack growth simulation was developed. At first, a domain is 
divided into some subdomains. Since the dimensions and shapes of subdomains 
can be flexibly changed and only the domain boundaries or common edges 
between subdomains are discretized in the SBFEM, a remeshing routine such as 
a straightforward one as in BEMs was set up with minimum mesh variances 
while the universality and flexibleness of the FEM is preserved.  
Keywords: crack trajectory, frequency-domain approach, response function, 
internal damping coefficient, load-displacement relation, mesh density, 
remeshing routine, subdomain, transient fracture problem. 
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1 Introduction 

For analyzing dynamic stress intensity factors, several numerical methods were 
evolved and used. As regards how the simulated domain is discretized in space, 
these techniques may be in general split up into four types: the finite difference 
method (FDM), the finite element method (FEM), the boundary element method 
(BEM); the meshless or meshfree method are more recently and extensively used 
in modelling mixed-mode crack growth. As regards how the time processes of 
DSIFs are calculated, the methods given can be arranged into time-domain ways 
based on the direct time integration, and integral transform methods inclusive of 
the Laplace transform and the Fourier one (that means, the frequency-domain 
method in virtue of frequency analysis, and the discrete or fast Fourier transform 
(FFT). Superb literature surveys of these methods were presented by Ariza and 
Dominguez [1], and Song [2].  
     A frequency-domain interpretation approach has certain benefits over the 
time-domain, such as no demand for a mass matrix, and so coarser meshes may 
be applied, and as soon as a complex frequency-response function is obtained, it 
can be employed in combination with FFT and inverse FFT (IFFT) to compute 
transient responses for different forms of dynamic loading.  
     The scaled boundary finite-element method (SBFEM), developed lately in 
[3,4], is a semi-analytical technique joining the advantages of FEM and BEM, 
i.e., it discretizes boundaries merely so that the simulated spatial dimensions are 
made smaller by one like the BEM and meantime it does not require fundamental 
solutions as the FEM. 
     In consequence, the considerable usability of the FEM and the easiness in 
remeshing of the BEM can be potentially kept.  
     The modelling of mixed/mode crack propagation is accomplished by 
combining the remeshing routine with a growth criterion. The developed 
simulation is competent of predicting crack trajectories and load-displacements 
dependences precisely and effectively. 
     Model problems with isotropic and anisotropic material characteristics are 
simulated by applying the frequency-domain procedure. The influences of the 
internal damping coefficient, the mesh density, the frequency interval and the 
maximum frequency are debated as well. The DSIFs KI and KII are extracted 
from the stress solution for a wide range of frequencies, resulting in complex 
frequency-DSIFs response functions. These functions are later applied to 
generate time histories of the DSIFs. This procedure is accurate and efficient 
with a small number of degrees of freedom. 
     In the paper, a frequency-domain technique is evolved for transient dynamic 
fracture analysis applying the SBFEM according to [5]. The Frobenius solution 
[6] developed in a different way in the frequency domain, is used to determine 
complex frequency-DSIFs functions that are afterwards employed with fast 
Fourier transform and inverse FFT to calculate the time process of DSIFs.  
     The static conception within the bounds of the SBFEM is presented, including 
instructions how to extract SIFs from the solution, in compliance with [6]. 
Considering the advantages of the SBFEM, a very straightforward remeshing 
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routine is evolved, in company with a concise discussion of mixed-mode crack 
growth criterion and explanation of the scaling routine.  

2 Computation of dynamic stress intensity factors 

A cracked region simulated by the SBFEM is indicated in fig. 1. All the time, the 
scaling center is located at the crack tip. The square-root singularity existing at 
this tip in a homogenous plate are the circumstances very considerably studied. 
In this instance the mode-I and mode-II SIFs are defined being 
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where r and θ are the polar coordinates with the origin at the crack tip (see fig.1). 
 

 

Figure 1: A cracked domain simulated by the scaled boundary finite-element 
method (taken from [5]). 

     Notice the relation between r and ξ (ξ =0 at the crack tip and 1 at the 
boundary, according to fig. 1) has the form 

( )θξLr =               (2) 
where L(θ) is the distance between the crack tip and the intersection point of the 
polar line r and the region boundary. In compliance with the Frobenius solution 
procedure outline and considering Eq. (1) we get 
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     The stress field expression is a sign of all the stress modes with λi ≥ 1, 
disappears for ξ → θ or r → 0. Just two modes with λi = 0.5 results in singular 
stresses for ξ → θ or r → 0. In view of both dynamic stress solution and its all 
added summation terms possessing mλi ≥ 2 (2 ≤ m ≤ k+1), e.g. is universal for 
static and as dynamic problems. After indicating these two stress modes as mode 
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I and mode II for λi = 0.5, and determining the limit in Eq. (3), it ends in the 
following SIFs:  
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Where L0 = L(θ = 0), what means the distance between the crack tip and the 
point A(ξ = 1, s =sA) in the direction of crack surface on the boundary (fig.1) The 
above definition is based on the local coordinate system where the cracking 
direction is supposed to coincide with the global x-axis. 
     For a domain involving a crack surface at an arbitrary way, the stresses 
should first be changed by the standard method to normal (mode I) stress σn and 
shear (mode II) stress τn on the cracking surface plane at the point A so that Eq. 
(4) may be considered: 
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     It should be remarked that the point A does not need to be a prevailing node. 

3 Fast Fourier transform to quantify transient response 

     Regard a periodic excitation force p(t) by N number of discrete values 
explained pn = p(tn) = p(n∆t) where ∆t = T0 / N is the sampling interval, T0 the 
period and n extends from 0 to N-1. The array pn characterizing the discretized 
force function may be rendered being a superposition of N harmonic functions  
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where f0 = 1/T0 stands for frequency (Hz) of first harmonic in the periodic 
extension of p(t), fj = j.f0 is the frequency of the jth harmonic, and Pj is a 
complex-valued coefficient which determines the amplitude and period of jth 
harmonic. Pj can be written as  
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     Eqs (6) and (7) circumscribe a discrete Fourier transform two: the array Pj is 
the DFT of the excitation sequence pn, and the array pn means the inverse of DFT 
(IDFT) of the sequence Pj. The frequency of the highest harmonic comprised in 
Eqs (6) and (7) is known being Nyquist frequency, introduced by N.f0/2=1/(2∆t).  
     A complex frequency-response function Hj is calculated for each f = fj (0 ≤ j ≤ 
N/2). Taking into account that Eq. (6) is a one-sided Fourier expansion, the 
values on both sides of j = N/2 have to be complex conjugates of each other, that 
means  

1,...,1
2

,* −+== − NNjHH jNj         (8) 
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where H* indicates the complex conjugate of H. The response to each harmonic 
constituent of the excitation can be evaluated in the form 

1,...,0, −== NjPHU jjj                  (9) 

     Lastly, the response un = u(tn) at discrete time moments tn = n∆t is calculated 
by the IDFT of Uj 
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     The aforesaid passage deals with the classical DFT solution to the transient 
elastodynamics, namely in the frequency domain. In so doing, the fast Fourier 
transform is a very effective and precision way of the DFT - IDFT two 
determination.   

4 Questions under discussion 

To prove the evolved frequency-domain technique based on the SBFEM, one 
standard dynamic fracture problem was simulated. Concurrently, complex 
frequency response functions for frequencies fj(j = 1,…, M) are reckoned using 
the Frobenins solution procedure. The minimum frequency is f1 = 0 Hz (static 
case) and the maximum frequency is represented by the quantity fM = fmax. At the 
same time, the damping effect is taken into consideration by adapting the elastic 
moduli to include an internal damping coefficient β, charactering the complex 
Young´s modulus Ec = E(1 + i2β) and the complex shear modulus Gc = G(1 + 
i2β) where E and G are the elastic Young´s modulus and the elastic shear 
modulus, respectively. The dynamic stress intensity factors KIj and KIIj (j = 1,…, 
M) are extracted next directly from the stress responses. The foregoing operation 
is succeeded by a FFT of the transient load Eq. 7 to get the coefficients Pj (j = 
0,..., N-1). The frequency responses Hj (j = 0,…, N/2) are then interpolated from 
the M number of KIj and KIIj. As a rule, the interpolation is indispensable for a 
much greater N (an integer power of 2) can be desirable to precisely meant the 
transient load while the complex response functions may be quite example of a 
smaller M number of frequencies. This may put by extensively computing cost. 
The proper frequency-response functions are made whole by Eq. (8). Lastly, an 
inverse FFT Eq. (10) of Uj (j=0, …., N) calculated by Eq. (9) is performed to 
obtain the response un (n = 0, …, N), that is, the time process of dynamic stress 
intensity factors. The functions fft( ) and ifft( ) are employed according to 
MATLAB to conduct FFT and IFFT, respectively. In so doing, damping 
coefficients of β = 0.0 , 0.001, 0.01, 0.025 and 0.05 are simulated. For each β, the 
excitation frequencies f1 = 0 to fmax  = 500 000 Hz with an interval ∆f = 1000 Hz 
are modelled, ending in M = 501 points on a complex frequency response curve. 
A convergence tolerance of α = 1e – 3 is applied for all the analyses. The 
influences of the mesh density, the damping coefficient β, the maximum 
frequency fmax and the frequency interval ∆f = fmax /(M-1) on the final exactitude 
and the computational cost are treated. For all the calculations, two-node linear 
line elements are applied.  
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5 Rectangular plate weakened by a slanting edge crack 

The said isotropic plate is subject to uniform traction on the upper surface. The 
geometry of the plate and boundary condition are demonstrated in fig. 2a.  
 

 

Figure 2: A rectangular plate with a slanting edge crack. (a) Dimensions, 
boundary and loading conditions, (b) coarse mesh including. 

     The material properties mean the shear modulus G = 29 GPa, Poisson´s ratio 
υ = 0.286 and density ρ = 2450 kg/m3. A mixed-mode fracture problem is the 
matter for which the Heaviside step loading is simulated (see fig. 2a). At the 
same time, all SIFs are normalized by P0(πa)1/2 where P0 stands for the quantity 
of the transient loading and a = 23 mm is the crack length, when supposing a 
plane strain condition. One subdomain is introduced possessing the scaling 
centre at the crack tip. One mesh with 41 nodes is indicated in fig. 2b. The 
stresses at the point A in fig (2.a) are used to extract SIFs in compliance with 
Eq. (5).  
     Examples of the calculated DSIFs are demonstrated in figs. 3 and 4 where the 
time histories of KI and KII are shown, computed employing the course mesh 
with varied material damping coefficients β compared to the issues obtained in 
by Fedelinski et al. using the BEM.  
     There is very fair material harmony applying β = 0.01 for both KI and KII. The 
coarse mesh and the fine mesh results in almost identical outcomes 
demonstrating that the course mesh with only 41 nodes is fine plenty (see fig. 4). 
The same isotropic problem with a little various material properties was 
simulated by Song [2] applying the time-domain SBFEM and a finer mesh with 
23 super-elements, and over 200 nodes. This expresses one of the disadvantages 
of time-domain methods, that means a mass matrix has to be applied in time-
integration. Since the mass matrix used in [2] is the low-frequency expansion of 
the dynamic stiffness matrix, it may just symbolize the inertial results at low 
frequencies. The higher frequency constituents have to be an example of fine 
meshes with small dimensions. The frequency-domain method, on the other 
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Figure 3: Normalized DSIFs applying the coarse mesh: influence of material  
damping coefficient β (taken from [5]). 

 

Figure 4: Normalized DSIFs using β = 0.01: influence of mesh density. 

hand, does not require mass matrices. This permits precise computation of time 
responses applying coarse meshes like this as fig. 2(b). The orthotropic instance 
of the same plate (see fig. 2.(a)) in plane stress is modelled applying the identical 
mesh (fig. 2(b)). The properties in the principal material axes stand for: Young´s 
modulus E1 = 82 GPa, E2 = R · E1, shear modulus G12 = 29 GPa, Poisson’s ratio 
υ12 = 0.4006 and the mass density ρ = 2450 kg/m3. The same problem was solved 
by Song applying the time-domain SBFEM [2] and Albuquerque et al. using the 
BEM [7]. Two events of R = 0.5 and 2.0 are studied.  
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6 Methodology of simulations and remeshing routine 

A domain can be advantageously divided into subdomains in the SBFEM just as 
it can be stood for by elements in the FEM. On account of the semi-analytical 
essence of the SBFEM, the dimension and shape of subdomains in a region can 
be altered to a great degree if desired without relinquishment of the resulting 
exactitude. As well, the scaling center can be put at the required place within the 
subdomain (if the domain boundary is observable from the scaling center). The 
nodal density in various subdomains can be very altered, too. A numerical model 
of LEFM – based mixed-mode crack growth applying the SBFEM presupposes 
the phases:  
     1. Subdivide the initial domain into some subdomains by straight lines or 
edges (see fig. 5) in view of the displacement constraints and loading conditions. 
The topological information of the domain is fully represented by the edges and 
their intersections, i.e., vertices.  
     Each edge is related with two vertices. Different seeds can be specified to 
different edges or subdomains so that the nodal density from edge to edge or 
from subdomain to subdomain can be flexibly varied as required. The loading 
conditions and boundary constrains are also related to edges: Each subdomain is 
fully represented by the connected vertices placed in a line counterclockwise 
round the scaling centre. Fig. 5 shows that a domain is composed of four 
subdomains with the subdomain 4 (S4) being the crack subdomain. Placing 
scaling centers for the normal subdomains can be optimized by taking advantage 
of non-discretization of unrestricted side-front surfaces. 
     Namely, we get the crack growth direction θ0 from the conditions 

( ) ( )[ ]

( ) ]
( ) ( )





















<
∂

∂
=

∂
∂

−+

+−+


















−

+








+
=

−

0and,0

cos59

cossin8cos31
1

1

cos3
14

2

2

22

22
2

2

θ
θ

θ
θ

θ

θθθ

π
θ
π
θ

θ
θ

π
θ

GG

K

KKK
E

G

II

IIII

  (11) 

     For the maximum stress energy release rate it holds Gmax = G(θ). The scaling 
factor is equal to  

maxG
GIC=α                    (12) 

where GIC is the critical SERR or else fracture energy being interrelated to the 
material fracture toughness KIC in the form  
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Figure 5: Subdomains. 

     Scaling the reference external loading vector and displacement reactions on 
crack growth is performed; it follows that  

ps = αp0 
us = αu0            (14) 

where ps is the scaled loading vector minimal for the crack to growth and us 
means the displacement field of the domain subject to ps, with the stress field 
recovered in the region. 
     The easy remeshing routine permits fully automatic crack growth modelling 
to be attained without user interferences. Improvements may lead to more 
sophisticated remeshing procedures but the current one seems sufficient for 
numerical examples. The smoothness of modelled crack trajectories depends on 
the pre-determined crack addition length. 

7 Conclusion 

Investigations employing the developed frequency-domain way of tackling have 
been performed on two standard problems with both isotropic and orthotropic 
material characteristics. Numerical issues indicate that this approach is 
competent of calculating time processes of DSIFs properly and strikingly 
involving a small number of degrees of freedom. It is expected when combined 
with the simple remeshing in the procedure SBFEM, this frequency-domain way 
will provide a very competitive system for simulating dynamic crack growth 
tasks. As well, it is learned that calculating the complex frequency-response 
functions is considerably time-consuming than FFT and IFFT. 
     The maximum frequency and the frequency interval that are important factors 
for the complex frequency-response functions to be applied in IFFT, should be 
chosen suitably. Internal material damping is considered to influence numerical 
both outcomes and stability. 
     The newly-evolved SBFEM was used to simulate the LEFM-based mixed-
mode crack growth in brittle and quasi-brittle materials. 
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