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Abstract 

This study is aimed at the development of a Trefftz-type method for solving 
plane elastic boundary value problems for open contours, which models crack 
propagation in brittle materials. The idea of the approach is as follows. Complex 
potentials are sought as linear combinations of independent holomorphic 
functions with the weights addressing singularities at the crack tips. Then the 
collocation method is applied to satisfy boundary conditions, which leads to a 
linear system for determination of unknown coefficients in the representation for 
complex potentials. The system is, in general, overdetermined and, thus, the 
SVD regularisation is applied to find its approximate solution. Two examples are 
presented.  
Keywords: cracks, complex potentials, Trefftz method, collocations, ill-posed 
problems. 

1 Introduction 

Common technique for solving plane elastic problems with cracks assumes 
determination of two holomorphic functions (complex potentials, see 
Muskhelishvili [1]) that, in general, have square root singularities at crack tips. 
Usually, complex potentials are found by solving singular integral equation, SIE, 
(or a system of SIEs) with respect to unknown generalised crack opening 
displacements or their densities. This approach requires discretisation of the 
boundary and application of special quadratures for singular integrals, which 
represent two common steps in boundary integral methods. The present study is 
aimed to avoid these two steps and to apply directly the Trefftz approach by 
representing complex potentials as linear combinations of known holomorphic 
functions.  
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     The Trefftz approach for elastostatics is known and its different variants have 
been discussed [2- 6]. However application of the method for fracture mechanics 
problems (e.g., [4,5]) is not fully developed. Here the approach used in [6-7] for 
smooth contours and non-classical formulations is extended for the case of plane 
bodies with cracks. It is proposed to seek representations for complex potentials 
as linear combinations of independent holomorphic functions, that have square 
root singularities at the crack ends, followed by the determination of unknown 
(complex) coefficients from the boundary conditions by the collocation method. 
In general, the number of collocation points is assumed to be greater than the 
number of the sought coefficients, which results in an overdetermined system of 
linear algebraic equations. An approximate solution of the system is obtained by 
regularisation of the matrix by using the singular value decomposition method. 
The regularisation is important because it ensures that only linearly independent 
holomorphic functions are used as the basis functions in series for complex 
potentials.  Two examples that use different sets of basis functions are 
presented to illustrate the approach. These are for a crack in a plane and acrack in 
a circle. 

2 Trefftz approach for cracks in 2D elastic media 

2.1 General expressions for the Trefftz approach using complex potentials 

General solution (no body forces) for plane elastic domain has the form [1] 
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     Here ϕ, ψ, Φ and Ψ are arbitrary holomorphic functions that are to be found 
from boundary conditions; harmonic function P and complex-valued function D 
represent mean stress and stress deviator which are functions of stress 
components σij; W is a complex-valued function proportional to the displacement 
vector (u1,u2); G is the shear modulus, κ=3-4ν for plane strain and κ=(3-ν)/(1+ν) 
for plain stress, ν is Poisson’s ratio.  
     Boundary value problem for cracks in plane elastic bodies is formulated as 
the first boundary problem of elasticity for which tractions (or stress vector) is 
known on the crack. In terms of stress functions and complex potentials this 
problem can be presented in the following form [1] 
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     Here N(ζ) and T(ζ) are normal and shear components of stresses on the 
boundary Γ of the considered domain Ω (interior or exterior including the crack); 
P(ζ) and D(ζ) are boundary values of the stress functions defined via boundary 
values of complex potentials Φ(ζ)  and Ψ(ζ).  In fracture mechanics, in general, 
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condition (2) is valid on the contour of the crack only, while on the rest of the 
boundary one can use mixed boundary conditions assuming that either tractions 
or displacements are known on different parts. Here, for the sake of simplicity, 
we apply (2) to the entire contour Γ.  
     Complex potentials Φ(z) and Ψ(z) are sought in the form 
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where hk(z) are independent functions holomorphic in the entire domain Ω; 2n 
complex coefficients ak and bk are unknown (for simplicity the number of terms 
in both sums are the same).  To satisfy (2) one needs to find derivatives of (3); 
they can be presented in the form 
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where ( ) ( )zhzH kk ′=  are holomorphic in Ω. 
     Substitution of (4) into conjugated boundary condition (2) yields the 
following expression 
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     Unknown coefficients ak and bk can be determined from a system of linear 
algebraic equations obtained from (5) by diverse methods, for instance by 
collocations, which is accepted in the Trefftz approach.  

2.2 Modification for cracks 

For the case when contour Γ has sharp corners direct application of (5) is limited. 
This is explained by the presence of weak singularities in functions Hk(z), which 
may lead to strong singularities in H′k(z). In fact, in the case of cracks some of 
the functions Hk(z) (or all of them) have square root singularities at the crack tips 
and the derivatives will have singularities of order –3/2. Therefore, a 
modification of (5) is necessary to avoid the presence of unphysical singularities, 
which can be done in the following way. Firstly, we introduce a special 
holomorphic function χ(z) that nullifies the difference )(ζχ−ζ at all crack tips 
and other sharp corners. Then the stress deviator (second formula in (1)) can be 
presented in the form 

( ) ( ) )()()()(),()()(, zzzzzzzzzzD Ψ+Φ′χ=ωω+Φ′χ−=          (6) 
where ω(z) is a new unknown holomorphic function in Ω. We further seek this 
function in the form 
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     Thus, the function ω(z) (and consequently the stress deviator) has no strong 
singularities at the crack ends and sharp corners, and hence all stress components 
can only have singularities not stronger than square root.  
     The notation for unknown coefficients in (7) has been introduced for 
convenience and allows one to represent the modified expression (5) in the 
following form 
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     By introducing real coefficients  
nkiCCa knkk 21,2 …=+= +                        (9) 

one can rewrite (8) in the form 

( ) ( ) Γ∈ζζ=ζ∑
=

,
4

1
pCF k

n

k
k                        (10) 

     Here the following notation has been introduced 
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is the set of known functions expressed via basis functions Hk(z);  
( ) ( ) ( )ζ−ζ=ζ iTNp                                 (12) 

is known stress vector on the contour; 
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where θ is the angle between the tangent to the contour at point ζ and real axis of 
a Cartesian coordinate system. 

2.3 On independence of coefficients Ck 

Unknown coefficients in (3) may be dependent. This is evident from Savruk’s 
representation [8] of complex potentials via the Cauchy integrals  
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where 2q(t) is a jump of N+iT across the contour. If this jump vanishes on Γ then 
both complex potentials are expressed via the density of the crack opening 
displacements Q(t)=2G(1+κ)-1(u′+

1-u′-
1+i(u′+

2-u′-
2)) alone. This function can be 
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sought as a finite series, which after integration results in the following 
expressions  
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     Here the coefficients bk are absent but different sets of basis functions is used 
for the representations of the second complex potential. The functions Gk(z) and 
Tk(z) can be expressed through Hk(z) if n tends to infinity, which will indicate 
dependence of  the coefficients. If n is finite then, in general, the coefficients can 
be considered as independent, at least with certain accuracy. However, the 
coefficients bk can be expressed through the coefficients ak in some cases of 
simple contours. This becomes evident if one considers a straight crack in the 
plane, in this case the solution can be derived via the potential Φ(z) only [1], 
which indicates that all coefficients bk in (3) depend on ak. In complex cases of 
geometry this does not take place, however one cannot expect that all 
coefficients Ck will be independent of each other for particular problems. 
Complete investigation of independence of representations  (3) and/or (7) 
presents essential difficulties and it is out of scope of this paper. It is further 
accepted that in numerical calculations any dependence of the coefficients will 
manifests itself in ill-condition matrix of linear algebraic system. Therefore, it 
necessitates application of a regularisation technique regardless of the method 
used for solution of (10).  

2.4 Regularised approximate solution of the problem 

Method of collocation is further used to solve (10). For this purpose, N nodes are 
selected on the boundary of the domain Γ∈ζ j , which results in the following 

linear algebraic system of equations 
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     The coefficients of this system and the right hand side are both complex, 
which is not suitable for the SVD method used to solve (16). Therefore, the 
following system has been formed 

BMC =                                                 (17) 
where C is 4n-vector of unknowns with the components Ck , M is 2Nx4n matrix 
of the system, Mkm=Re(Fkj), m=1…N, Mkm=Re(Fkj); m=N+1…2N., k=1…4n; B is 
2N-vector of applied load with the components Bm=Re(pm), m=1…N; Bm=Im(pm), 
m=N+1…2N.  
     The number of collocations is chosen to make system (17) overdetermined. 
Then the inverse matrix M–1 in (17) is found by the singular value 
decomposition, SVD (see e.g. Golub and van Loan [9]). This method allows to 
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control the condition number of the matrix Cond(M) and if necessary to perform 
regularisation if Cond(M) is greater than a chosen threshold, C*. The solution of 
(17) is presented as follows  

UDVMBMC ′== −− T
regreg

11 ,                       (18) 

     Here U (4nx2N) and V (4nx4n) are orthogonal matrices in the SVD of the 
matrix M, M=UDVT, D is (4nx4n) diagonal matrix formed from the singular 
values, dj, of the matrix M placed in descending order, d1≥d2≥…≥dn,  D′ is the 
diagonal matrix of the rank k as follows D′=diag{d1

-1,d2
-1 ,…dk

-1,0…0}. It should 
be noted that D′=D-1 if no regularisation has been made.  

3 Numerical examples 

3.1 Crack in a plane 

Let us consider an elastic isotropic plane with a crack lying on the interval (-L,L) 
of the real axis. Let the surfaces of the crack be subjected to normal and shear 
load p=N+iT (Fig 1a). An analytical solution for this configuration can be found, 
in particular, stress intensity factors, SIFs, at the right crack tip are found in the 
following form [8] 
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Figure 1: Crack in the plane (a), edge crack in the circle (b). 

The following basis functions are used  
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     These provide correct behaviour of sought solutions at infinity and at the 
crack tips, which is important because improper choice of basic functions may 
lead to incorrect solutions. 
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     Calculated stress intensity factors are found in the form  
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where p0 is a parameter of loads. 
     Calculations have been performed for different polynomial loads, 
p(t)=αm(x/L)m with different n and N. The condition number has been kept below 
107. The results for SIFs are accurate if m<n, which is explained by proper 
choice of basis functions (in this case p0=αm). Tests have been also made for 
other load types and they show good agreement with analytical solutions. Thus 
solutions for step-like load on the crack have been checked. Fig 2 shown one 
example in which n=36, N=576, C*=212 and calculates SIF has an error of less 
than 0.8%, KI

ideal=1/3 (pL)1/2. 
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Figure 2: Boundary stresses for the case for step-like load applied to the 
crack in plane. 

3.2 Edge crack in a circle 

Let us consider a crack (of the length L) in an elastic circle of the radius R; the 
crack is located on the interval (-R,-R+L) of the real axis, Fig 2b. The surfaces of 
the crack are subjected to normal pressure p. An analytical solution for this 
configuration can be found, in particular,  mode I stress intensity factor is found 
in the following form [8] 
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The following basis functions are used in modelling 
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     This selection provides correct behaviour of the solution at the crack tip and 
at the crack mouth.  
     Calculated mode I SIF is found as follows  
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     Calculations have been performed for different crack lengths varying from 
0.2R to 1.8R. Different combination of parameters n and N have been checked 
and in all tests the threshold for the condition number has been set  C* =108. The 
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results for KI are satisfactory for 0.2<L/R<1.4 and the errors can be made within 
1% by the proper selection of parameters n and N. For long cracks the numbers n 
and N should increase, which makes the condition number of the matrix to be 
quite big and therefore the SVD regularisation cannot produce accurate results. 
An example of boundary stress calculations is presented in Fig 3 for the case 
L=1.2R, where for n=36, N=468 (180 nodes have been selected on the 
circumference and 4n nodes on the upper and lower boundaries of the crack, i.e. 
288 nodes in total the contour modelling the crack). The condition number of the 
matrix M is greater than 1015, therefore the regularisation has been performed, 
Cond(Mreg

-1)=6.85⋅107. Despite reduced accuracy caused by regularisation the 
result for KI=4.437(πL)1/2p is within 0.1% error. 
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Figure 3: Normal (lefts) and shear (right) stresses on the contour in the case 
of the edge crack in the circle, L=1.2R. 

4 Conclusions 

It is shown that the Trefftz approach in which complex potentials are 
approximated by linear combinations of holomorphic functions can be used for 
solving fracture mechanics problems. It is important to ensure correct behaviour 
of the sought solutions at the crack tips and at the sharp corners. This has to be 
achieved by the proper selection of the holomorphic functions used for 
representation of the complex potentials. The method leads to an overspecified 
system of linear algebraic equations, which requires regularisation. The latter can 
be made on the basis of the SVD methods, which also ensures independence of 
the coefficients in truncated series for complex potentials. Two considered 
examples indicate that the proposed approach is capable to solve the problems 
with straight cracks in infinite and finite domains. The analysis of more complex 
geometries involving curvilinear and branching cracks is required in order to 
conclude applicability of the suggested approach for the general case. 
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