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Abstract

Decohesion between the matrix and inclusions in advanced multi-component com-
posite materials is an important failure mechanism. In particular, the overall bulk
strength of the composite depends strongly on interfacial damage and debonding.
A 3-D model of interfacial decohesion is developed for a spherical particulate-
reinforced composite material. In this model, interfacial failure is initiated by the
loss of ellipticity. A discrete constitutive equation is used to represent failure at the
interface of the composite. Incremental displacement steps are applied to the model
within the elastic range of the constituent materials and the interface is analyzed
using the boundary element method to determine the progression of interfacial dam-
age and debonding. The effective properties of the bulk composite are calculated
at each incremental step.
Keywords:composite materials, decohesion model, incremental debonding, bound-
ary element method.

1 Introduction

A composite is a manufactured material with two or more physically or chemi-
cally distinct phases. Particle composites typically contain a matrix material and
inclusions. The interface between the inclusion and the matrix is a bonding surface,
across which both weak and strong discontinuities occur [1]. Weak discontinuities
are defined as discontinuous changes in the strain field across the limits of a narrow
strain localization region over which the displacement field remains continuous.
Under load, strong discontinuities may develop, causing the displacement field to
become discontinuous and the strain field to become unbounded.
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Composites are designed to create desirable material properties such as increased
strength, increased stiffness, decreased weight, corrosion resistance, and increased
or decreased thermal and electrical conductivity. The overall performance of a com-
posite depends on the material properties of each phase as well as the interfacial
properties between the matrix and inclusions [2]. These material and interfacial
properties govern how the material fails, including such failure modes as brittle
fracture, ductile rupture, delamination, fiber pullout, yielding, and excessive defor-
mation [3]. Composites commonly fail along the interface between the matrix and
inclusion. This type of failure is called interfacial material failure and is defined
as the formation of two new surfaces from a previously bonded interface between
two materials. Interfacial decohesion is usually observed in composites with very
low strength matrices relative to the inclusion, (i.e., ceramic inclusions in a pure
aluminum matrix), while particle fracture usually occurs with a medium to high
strength matrix [4, 5].

Given the significance of interfacial damage progression on the bulk strength
and toughness of composite materials, it is not surprising that one of the major
research areas in composites is the modeling of bonding interfaces between phases.
The interfacial zone has been modeled in a number of ways, including as a nar-
row region of continuum with graded properties, as an infinitely thin surface with
springs, and as a cohesive zone with traction-separation relations. Recently, the
cohesive zone approach has become widely used. Needleman [6] was one of the
first to apply the traction-separation cohesive relationship to the model. Needleman
focused on a model that describes the evolution from initial debonding to deco-
hesion and subsequent void growth. Needleman suggested a continuum approach
where strain is defined not only in the continuous part of the body, but also at the
discontinuous interface, and therefore, standard stress-strain constitutive equations
can be considered everywhere. The major area of research using this technique is
the determination of the traction-separation cohesive relationship, which has been
modeled using various functions including linear [7], quadratic [8], polynomial [6],
trapezoidal [9], bilinear [10], and exponential functions [11, 12].

Schreyer et al. [3] took a fundamentally diferent approach than Needleman, in
which strain softening occurs after ellipticity is lost. In this approach, the onset
of inelasticity or the loss of strong ellipticity are indicators of the progression
of more complex material behaviors that lead to the progressive softening of the
material [13]. The direct calculation of the strong discontinuity in displaceent can
be determined because the discrete equation can be applied at the instant ellipticity
is lost. Once decohesion is initiated on a surface of discontinuity, the adjacent
continuum tends to unload into the elastic regime.

Han et al. [14] combined Schreyer’s decohesion model with the boundary ele-
ment method to develop a 2D simulation capability of interfacial decohesion of
a fiber-reinforced composite material. The current research extends the work of
Han et al. from 2D fiber-reinforced composites to 3D reinforced composites. In
particular, boundary element analysis will be used in conjunction with the damage
function proposed by Schreyer [3] at the interface between the matrix and inclusion
to study interfacial damage of the composite.
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2 Numerical formulation

The computational domain considered in the current research is comprised of a
matrix material with an embedded spherical inclusion. A boundary integral equa-
tion (BIE) is written for each of the two zoned-homogeneous, isotropic, elastic
regions. Collocating the BIE at the boundary element nodes results in a system of
linear equations relating the components of traction to the components of displace-
ment. These equations can be represented symbolically as

[Hk]{uk} = [Gk]{tk} (1)

where the superscript k represents the region number, and {uk} and {tk} repre-
sent the components of displacement and traction, respectively, at the collocation
nodes.

On the outer boundary of the matrix material, either the displacement or the
traction is prescribed. On the interfacial nodes between the spherical inclusion
and matrix, neither the displacement nor traction components are known a priori.
The system of equations is closed by setting the following interfacial boundary
conditions.

{ui
j } − {um

j } = [u] (2)

{t ij } = −{tmj } (3)

where [u] represents a jump in displacement along the interface as discussed in the
next section, the superscript i represents the inclusion and superscript m represent
the matrix, and the subscript represents the global node within the appropriate
region.

Initially, the interface between the matrix material and the inclusion is assumed
to be perfectly bonded, that is, continuity of traction and displacement is assumed
along the interface. In order to minimize the computation cost of the analysis, the
displacement at which damage initiates is calculated and the decohesion analysis
is started at that displacement. The displacement is then incrementally increased
to study the progression of damage.

At each increment of displacement, the boundary integral equations are solved
and the tractions along all interfaces are evaluated. The development of damage
(decohesion) is determined through the use of a damage function F given by

F =
[(

τn

τnf

)2

+
(

τt

τtf

)2] 1
2

− f when τn ≥ 0

F =
∣∣∣∣ τt

τtf

∣∣∣∣ − f when τn < 0 (4)

where τn is the normal component of traction, τt is the tangential component of
traction, τnf is the value of failure initiation traction in a pure tensile mode, τtf

is the value of failure initiation traction in a pure shear mode, and f is the so-
called softening function. The function F is defined so that no damage occurs if
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F < 0 and F > 0 is not allowed. Damage develops only if F = 0. The softening
function f is chosen so that f = 1 for an undamaged interface and f = 0 for a
fully decohered interface. For 0 < f < 1, a linear relationship is chosen between
the absolute value of the jump in displacement [u] at the interface so f is given by

f = 1 − |[u]|
u0

(5)

where the model parameter u0 is the value of |[u]| at which complete decohesion
has occurred. Although the choice of f is somewhat arbitrary, in the special case
of uniaxial tension, the softening function translates into a curve of normal traction
versus normal displacement discontinuity in which case the area under the curve
is the fracture energy, Gf .

After each increment of displacement, the damage function F is evaluated at
each interfacial node. If F > 0, the threshold to initiate decohesion has been
exceeded and is not allowed by the decohesion model. As an example, if the trac-
tion at an interfacial node had no tangential component, F > 0 would imply that
τnf had been exceeded. In order to drive F to within a specified tolerance ε of 0,
the following algorithm is used. Nodes with the largest positive values of the dam-
age function are chosen for softening, i.e., given a jump in displacement across the
node between the inclusion and matrix.

The displacement discontinuities at the softened nodes are determined by the
following evolution equation

�[u] = �λg (6)

where [u] = {[u]2
n + [u]2

t }
1
2 , g = ∂F

∂τ
, and �λ = δλ1 + δλ2 + · · · . The secant

algorithm is applied to determine �λ in order to bring F to within a tolerance ε of
0. An initial small value for δλ1 is assumed. This then provides the initial assumed
value for �[u] as shown in Eq. 6. This jump in displacement provides stress relief
which is quantified by performing the boundary element analysis with the modi-
fied boundary conditions (Eq. 2). The damage function is then re-evaluated at the
softened nodes. If F is still positive and above the tolerance, δλ2 is determined
using the equation

δλ2 = δλ1
F1

F0 − F1
(7)

where the subscript on F indicates the iteration number. The procedure is contin-
ued until F < ε. During any iteration, if |[u]| reaches u0, the boundary condition
at that node is set to traction free indicating that the node is completely decohered.

3 Damage and debonding propagation

For all material tests, the outside dimensions of the material specimen is a cube
with edge length 2 centered at the origin. The outside matrix material is aluminum
with one spherical ceramic boron particle at a volume fraction of 10%. The elastic
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material properties are given by Eal = 67.51 GPa, νal = 0.35557, EB = 413.04
GPa, and νB = 0.2.

Two types of material tests are performed in this research, namely, a tensile test
and a shear test. For the tensile test, an incremental uniform tensile displacement
is applied to the top and bottom surfaces of the composite specimen. The effective
Young’s modulus for the composite undergoing the tensile test is calculated as

Eeff = FnL

Aδn

(8)

where Fn is the resultant normal force on the top or bottom surface of the speci-
men, L is the specimen length, A is the cross-sectional area, and δn is the applied
normal displacement. The resultant force is calculated by integrating the tractions
over the top and bottom faces.

For the shear test, an incremental uniform shear displacement is applied to the
top and bottom surfaces of the composite specimen. The effective shear modulus
is calculated as

Geff = FsL

Aδs

(9)

where, in this case, Fs is the resultant shear force on the top or bottom surface of
the specimen and δs is the applied shear displacement.

The maximum interfacial traction is defined as

τf =
√

τ 2
nf + τ 2

tf (10)

where τnf and τtf are the normal and shear mode failure limits used to calculate
the damage function F . For all cases, the maximum interfacial traction is chosen
as τf = 12 MPa. The parameter uo, the maximum value that the displacement
discontinuity reaches before debonding is complete, is chosen as uo = 0.000046,
again for both the ductile and brittle failure models. The values of τf and uo are
chosen to ensure that the interfacial bond will substantially fail before the matrix
material yields.

Two cases are considered for both the tensile and shear test, namely, τnf /τtf =
0.5 and τnf /τtf = 5.0 to illustrate the difference between normal-force dominated
failure and shear-force dominated failure.

3.1 Tensile load results

The first case considered is the single inclusion model undergoing a tensile load.
Upon application of a normal displacement, the traction distribution on the top
and bottom surfaces of the composite is non-uniform because of the inclusion.
The magnitude of the traction vector normalized by the maximum interfacial trac-
tion, τf , is plotted for three values of the applied strain in Fig. 1. As shown in
Fig. 1(a) for the case of a composite consisting of an aluminum matrix with embed-
ded ceramic spherical particle before the onset of interfacial damage, the trac-
tion distribution across the top surface increases towards the center of the surface
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(a) (b) (c)

Figure 1: The magnitude of the traction vector along the top surface of the com-
posite specimen undergoing a tensile test (a) before the initiation of inter-
facial damage, (b) after the initiation of interfacial damage but before the
onset of debonding, and (c) after the onset of debonding.

where the gap between the surface and inclusion is smallest indicating the higher
Young’s modulus of the inclusion. The traction distribution shown in Fig. 1(b)
for the case in which decohesion has been initiated but before any debonding has
occurred is quite different. The damage along the interface at the north pole of
the inclusion has reduced the load bearing capability resulting in a greatly reduced
normal traction in that region. To compensate, the normal traction is increased in
the adjacent nodes. Finally, as seen in Fig. 1(c) for the case in which debonding
has occurred at the north pole, the normal traction in this region has been further
reduced. Although the plots shown are for the normal-force dominated failure, the
results for the shear-force dominated failure are qualitatively similar.

The normalized effective Young’s modulus is defined by En = Eeff /Emat where
Emat is the Young’s modulus of the matrix material. The normalized Young’s mod-
ulus is shown as a function of the applied normal strain in Fig. 2 for the shear-force
dominated and normal-force dominated cases undergoing a tensile load. Initially,
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Figure 2: The normalized effective Young’s modulus for shear- and normal-force
dominated failure undergoing tensile loading.
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the normalized Young’s modulus is given by En = 1.165, indicating the enhanced
stiffness of the composite caused by the spherical inclusion. As the incremental
displacement is applied, the interface of the composite begins to experience dam-
age when the bulk strain reaches 17 µε (µε = 10−6 mm/mm) and 64 µε for
normal-force and shear-force dominated failure, respectively. Debonding of the
first node occurs at approximately 100 µε regardless of the failure mode. The nor-
malized Young’s modulus plateaus after the stabilization of the equatorial region,
at approximately 200 µε for the normal-force dominated failure and 160 µε for
shear-force dominated failure.

There is a notable difference between the shear-force dominated and normal-
force dominated failure modes. In the shear-dominated failure mode, damage ini-
tiates at either the north or south pole and then progresses from that pole towards
the equatorial compressive zone before damage initiates at the opposite pole. The
damage occurs only in one hemisphere from a strain of 64.0 µε until approxi-
mately 122 µε. At that point, the effective Young’s modulus remains relatively
constant until a strain of approximately 142 µε as seen in Fig. 2. Beyond this
strain, damage is initiated at the pole of the other hemisphere, and now damage
and subsequent debonding progresses within the new hemisphere. For normal-
force dominated failure, the progression of failure occurs simultaneously in both
hemispheres.

3.2 Shear load results

The second case considered is the single inclusion model undergoing a shear test.
When a shear displacement is applied to the top surface of the composite the trac-
tion distribution on this surface is again non-uniform. The magnitude of the trac-
tion vector normalized by the maximum interfacial traction is plotted for a case in
which damage has been initiated in Fig. 3. For the shear test, damage initiates at a
location 45◦ from the vertical. The right-hand side of the top surface in the figure is
the side closest to the damaged interface, and hence, the tractions are lower along
the right side of the top surface compared to the left side because of the reduced
load bearing capacity.

The normalized effective shear modulus is defined by Gn = Geff /Gmat where
Gmat is the shear modulus of the matrix material. The normalized shear modulus
is shown as a function of the applied shear strain in Fig. 4 for the shear-force
dominated and normal-force dominated cases undergoing the shear test. Initially,
Gn ≈ 1.10, indicating an increased shear modulus of the composite compared to
the matrix material. As incremental shear displacement is applied, the interface of
the composite begins to undergo softening when the bulk strain reaches 53 µε and
110 µε for normal- and shear-force dominated failure, respectively. Debonding
of the first node occurs at approximately 228 µε and 200 µε for normal- and
shear-force dominated failure. The normalized shear modulus plateaus after the
stabilization of the rotated equatorial region, at approximately 268 µε for normal-
dominated failure and 210 µε for shear-dominated failure. As in the case of the
tensile test, damage progresses in one hemisphere at a time for the shear-dominated
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Figure 3: The magnitude of the traction vector along the top surface of the com-
posite specimen undergoing a shear test after the onset of damage.
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Figure 4: The normalized effective shear modulus for shear- and normal-force
dominated failure undergoing shear loading.

failure case whereas damage progresses simultaneously in both hemispheres for
the normal-dominate failure case.

4 Conclusions

A softening decohesion model has been combined with linear elasticity to describe
the evolution of interfacial failure in spherical inclusion reinforced materials. As
softening occurs, the sum of the work performed by the traction and the stored
energy released by the material equals the energy dissipated. Progressive evolu-
tion of the debonding zones and the propagation of decohesion along the interface
have been illustrated by incremental simulations. The material failure parameters,
τnf and τtf , play an important role in the decohesion process and may explain the
difference between failure in ductile and brittle materials. In particular, if the ratio
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τtf /τnf is small, then the material is more likely to fail in shear. In these cases once
a portion of the interface becomes partially decohered, the damage zone slides
tangentially along the interface until a compressive region is reached. On the other
hand, if τtf /τnf is large, then this shear mode failure is inhibited and damage tends
to progress simultaneously on both sides of the inclusion. Decohesion has signifi-
cant effect on the macroscopic response of the composite materials. In particular,
the effective composite properties are adversely affected to the point where the
partially decohered inclusion can actually diminish the effective shear and Young’s
moduli.
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