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Abstract 

Design of any cathodic protection (CP) system requires one to determine current 
density which meets predefined criteria, and to ensure as uniform a current 
density distribution as possible over the structure surface. Nowadays the only 
reliable way to determine current and potential distribution is employment of 
numerical techniques. In this paper, the optimisation of a passive cathodic 
protection system by using coupled BEM/FEM is presented. FEM is appropriate 
for solving completely bounded domains, and it is used for discretization of 
anodes and cathodes. BEM is applied for discretization of electrolyte, i.e. infinite 
domain. In the coupled BEM/FEM the soil domain is linked to the steel domain 
through the current density (boundary condition) generated by the kinetics of the 
corrosion reactions at the steel surface. Verification of the obtained numerical 
result is made by comparing it with measured results. Good agreement between 
simulation and measurements has been found. 
Keywords: cathodic protection, finite element method, boundary element 
method, galerkins weighted residuals method, successive underrelaxation 
method. 

1 Introduction 

The distribution of protection potentials in systems of cathodic protection 
(electrostatic field with or without sources) is defined either by the Poisson or 
Laplace equation, with the usage of corresponding boundary conditions. 
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Boundary conditions in the cathodic protection system, in most cases, are not 
linear because the electrochemical reactions do not give linear functional 
relations between the protection current density and the corresponding potential. 
This piece will treat nonlinear functional relations V = f (σ) and the case of a 
homogeneous electrolyte, i.e. electrolyte with the same average value of soil 
resistivity [2]. 
     On the figure 1 the basic model of cathodic protection is given. The galvanic 
anode is made of cast zinc. Positive ions from the anode move through the 
electrolyte towards the object that is being protected, while electrons move in the 
opposite direction. DP (drain point) represents the point where the cable 
installation connects with the object being protected – the pipeline. 
 

 

Figure 1: Cathodic protection system with galvanic anodes. 

     The authors have developed software for modeling and optimization of 
cathodic protection systems with galvanic anodes. Idea for this project is based 
on the works in field of cathodic protection that Bosnian company Energoinvest 
carried out in Libya in period 2003-2005 year. Owner and investor of the works 
was Great Man-made River Authority (GMMRA). The contractual obligation 
was to protect cathodically a pipeline in total length of 204 km, and with internal 
diameter of 4 meters. All the measured results before and after CP system 
installation were available and these results enable the authors to make software 
validation i.e. comparison measurements and numerical calculation outcome.  

2 CP system design 

The system was designed to provide a 250 mV IR free potential shift criteria 
from the natural potential, by using a 1mA/sq.m current density at the soil 
resistivity of 3000 ohm-cm or less, and at higher soil resistivity area, a lower 
current is expected to be required to provide the required protection [1]. The 
criterion of 250 mV IR free potential shift criteria was selected based on the 
above ground surface measurement to ensure that the criteria of 100 mV IR free 
potential shift could be achieved and guaranteed over circumference of the 
pipeline.  The anode assemblies have been installed in vertically drilled holes on 
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both sides of the pipeline at normally 5.5 meters distance from the pipeline’s 
centre line. The anode spacing might vary from groundbed to groundbed, but the 
average spacing is 13.5 meters for cast zinc (CZ) anode type.  

3 Mathematical model 

The Finite Element Method (FEM) is appropriate for the domains with several 
media that have finite boundaries. The Boundary Element Method (BEM) is 
suitable for calculation of the domains which contain only one medium and 
boundaries that can be finite or infinite. Let’s consider the basic principle of the 
Galerkin’s weighted residuals procedure used in the FEM, direct BEM, and 
iterative sequential Dirichlet-Neumann’s hybrid BEM/FEM method. Governing 
Laplace partial differential equation (PDE) is solved by using the BEM. Integral 
equation of the steady state current field by using the FEM. 
     The potentials on the BEM/FEM boundary are calculated by applying the 
successive underrelaxation iterative method [10]. 

3.1 The Finite Element Method (FEM) 

In the FEM, the domain of the considered physical system is divided into finite 
number of elements of certain geometry called finite elements using so-called 
procedure discretization of continuum [4–6]. The governing Laplace PDE of the 
steady state current field is 
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     Applying the Galerkin’s weighted residuals procedure the solution of electric 
potentials distribution can be written in the following form: 

[ ] { } { }FEMFEMFEM QH =ϕ⋅                                           (2) 
where 
     [ ]FEMH  -  two-dimensional matrix of coefficients where the common term is 
given by: 
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(i=1,2,..,nf; j=1,2,...,nf )             (3) 
     { }FEMΦ  - column vector matrix of unknown potentials in the nodes of a finite 
element. Order of this element is nf x 1. 
     { }FEMQ  - column vector matrix of the free terms that contain Neumann 
boundary conditions. The common term is given by: 
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e
iN  - shape functions that are used to approximate unknown potentials function 

in the following way: 
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 - Neumann boundary condition. 

3.2 The direct boundary element method 

The mathematical model of the direct BEM is based on Green’s symmetrical 
identity as well as equations of continuity [3]. These equations serve to apply the 
boundary conditions on the boundaries between different media. Let’s consider 
two different cases of 3D electrostatic field calculation. The first case is when the 
observed point Q falls within the domain V, and the second case is when it falls 
on the boundary of media. 
     Generally, formula for potential calculation within, and out of the domain as 
well as on the boundary is given by: 

P P
PS S

(P)C(Q) (Q) T(P,Q) (P) dS G(P,Q) dS
n

∂ϕ
⋅ϕ + ⋅ϕ ⋅ = ⋅ ⋅

∂∫ ∫                  (6) 

where 
     )Q,P(G  - Green function, 
     )Q,P(T  - derivative of the Green function in the direction of outward normal 
vector to the boundary surface, 

     ϕ  i 
n∂
ϕ∂  - calculated the potential and normal electric field component on the 

boundary surface 
     )Q(C  - the constant that can be represented by: 
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     Applying the collocation point procedure of the weighted residuals method on 
the equation (6) the solution in the matrix system form can be written: 
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where 
     [ ]BEMH  - two-dimensional coefficient matrix with general term defined by: 
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     [ ]BEMG  - two-dimensional coefficient matrix with general term defined by: 
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     The value of variable ϕ  or pn/ ∂ϕ∂  is known in every single node of the 
boundary elements for the domain boundary with only one media. So by using 
the equation (8) the calculation of the variable (ϕ  or pn/ ∂ϕ∂ ) that is not given 
as a boundary condition (ϕ  or pn/ ∂ϕ∂ ) is found. 
     On the boundary between two domains with different media the unknowns 
are ϕ  or pn/ ∂ϕ∂ . In this case separate equation system (6) is formed for each 
boundary of domain taking into consideration the Dirichlet’s and Neumann’s 
boundary conditions. The polarization curve, which describes the relationship 
between the potential and the current density, indicates the corrosion condition 
on the pipe surface and is normally used as the boundary condition. It is not an 
easy task to determine the polarization curve since it strongly depends on a 
number of phenomena. Furthermore, the polarization curve can also be a 
function of time and history. One common polarization curve for steel (cathode) 
can be written in the following form [7]: 
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     The polarization curve for a galvanic anode would be: 
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     Where V is the potential of the steel, obtained from solution of the inner 
domain, and Φ is the potential of the soil adjacent to the steel, obtained from 
solution of the outer domain. The term βFe represents the Tafel slope for the 
corrosion reaction and EFe represents the equilibrium potential for the corrosion 
reaction [7]. 
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     On the boundary between two domains with different media additional 
equations of continuity for ϕ  or pn/ ∂ϕ∂  are written. 

3.3 The hybrid BEM/FEM method 

An example of the cathodic protection system calculation using 3D finite 
elements discretization of the anodes and cathode is shown on the figure 2. 
Discretization of electrolyte using boundary elements as well as metallic 
connections between anodes and cathode applying 1D finite elements are also 
shown on the figure 2. 
 

Steel Cathodes
FEM 3D

Coating Cathodes
FEM 3D

Electrolyte
BEM 3D

Zn Anodes
FEM 3D

Bonds FEM 1D

 

Figure 2: An example of discretization of a cathodic protection system using 
the coupled BEM/FEM domain. 

     There are direct and iterative algorithms for linking the finite and boundary 
element methods. The direct approach requires a system of linear algebraic 
equations given by  

- equation (2) in the FEM domain 
- equation (8) in the BEM domain 

and the continuity equations for the BEM/FEM boundary. 
     The significant disadvantage of this approach is the need to solve large 
system of equations. In order to save the CP memory it is recommended to use 
some of the following algorithms: 

- Robin relaxation coupled algorithm 
- Neumann-Neumann coupled algorithm 
- Advanced Dirichlet-Neumann algorithm 
- Advanced sequential Dirichlet-Neumann algorithm 

     When using the BEM/FEM iterative method separate calculations for the two 
separate systems of linear algebraic equations are used, one for the BEM and the 
other for the FEM domain. The potential distribution or flux, at the BEM/FEM 
boundary, is then found using the iterative successive underrelaxation method. 

3.4 Advanced sequential Dirichlet-Neumann algorithm 

In this paper advanced sequential Dirichlet-Neumann BEM/FEM algorithm is 
used. This algorithm consists of the following steps [10]: 

- Partition of the whole domain into BEM and FEM domains 
- Set initial potential values on the BEM/FEM boundary 
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- Start the iterative procedure which lasts until the set convergence 
condition is fulfilled. 

3.4.1 Calculation of the electric field in BEM domain 
The Dirichlet or Neumann boundary conditions are given on the boundary of the 
BEM domain, except on the boundary between the BEM and FEM domains. 
Therefore, for the matrix system (8) in matrices [H]BEM and [G]BEM the BEM-
BEM contributions from “pure” BEM boundary and the BEM/FEM contribution 
from the mutual BEM/FEM boundary could be written in the following form: 
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     Also in the system (13) it is necessary to take into account the Dirichlet and 
Neumann boundary conditions including the potential values at the BEM/FEM 
boundary from the previous iteration step. Solving the system (13) the normal 
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3.4.2 Calculation of continuity equation at the BEM/FEM boundary 
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     As a result the Neumann boundary conditions are found that are applicable in 
the direction of normal vector on the FEM side of the BEM/FEM boundary. 

3.4.3 Calculation of electric field in the FEM domain 
In this step the electric field in the FEM domain is calculated. The Dirichlet or 
Neumann boundary conditions are specified for the FEM domain boundary 
except for the FEM-BEM boundary itself. Therefore, for the matrix system (2) in 
matrices [H]FEM the FEM-FEM contributions from “pure” FEM boundary and 
the FEM/BEM contribution from the mutual FEM/BEM boundary can be written 
in the following form: 
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where matrix elements { }FEM
1nQ +  are calculated using expressions (4) and (14). The 

outcome are potentials { } BEMFEM
n

−ϕ  at the FEM/BEM boundary.  

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

Boundary Elements and Other Mesh Reduction Methods XXX  111



3.4.4 Correction of calculated potentials at the BEM/FEM boundary 
In this step correction of the potentials calculated in the previous step at the 
FEM/BEM boundary is done. The correction is made by using the successive 
underrelaxation method: 

{ } ( ) { } { } BEMFEM
1n

FEMBEM
n

FEMBEM
1n 1 −

+

−−

+ ϕ⋅θ+ϕ⋅θ−=ϕ                      (16) 
Values of underelaxation θ are in range 0 – 1. 

3.4.5 Check if the convergence criterion is fulfilled 

4 Calculation results 

The current density distribution over the structure being protected is given in 
figure 3. The potential distribution on the ground surface is shown in figure 4. 
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Figure 3: Current density distribution. 
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Figure 4: Potential distribution on the ground surface. 
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5 Conclusion 

Application of the coupled BEM/FEM method has proved to be an efficient 
method for solving the problems in field of cathodic protection. Comparison 
numerical results have shown good agreement with the readings, protective 
potentials and current, taken on site. 
     Also presented algorithm has very stable convergence, and saves on 
computational time and memory requirements as well. Nonlinear boundary 
conditions are used in this software. The selection of boundary conditions is very 
delicate task, and choice of the parameters to be used is subject of serious 
analysis for specialists in field of electrochemistry. 
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