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Abstract 

The paper deals with a frequency domain analysis of a log-periodic dipole array 
(LPDA) antenna using boundary element analysis. The mathematical model is 
based on the set of corresponding coupled Pocklington integro-differential 
equations. Once the current distribution along the wires is obtaining, it is 
possible to determine the radiation characteristics of LPDA. The set of coupled 
Pocklington integro-differential equations is handled via the Galerkin-Bubnov 
scheme of the Indirect Boundary Element Method (GB-IBEM). The field 
irradiated by LPDA is also assessed using BEM formalism. 
Keywords: log-periodic dipole arrays, set of Pocklington equations, boundary 
elements, frequency domain analysis. 

1 Introduction 

A log-pariodic antenna is a radiating system having a structure providing that its 
impedance and radiation properties repeat periodically as the logarithm of 
frequency [1, 2]. As the variations over a wide frequency range of interest are 
negligible, log-periodic antennas are usually considered to be frequency-
independent.These antennas operate in the VHF and UHF bands thus covering 
the frequency range from 30MHz to 3GHz. 
     The log-periodic dipole array (LPDA) antenna is a series-fed array of parallel 
straight wires having successively increasing lengths outward from the feeding 
point at the apex. There are smaller elements in front of and larger elements 
behind each dipole thus producing a directional primary pattern in the same way 
as a Yagi antenna. Contrary to the Yagi-Uda array where only one element of the 
array is directly fed, while the other wires operate in a parasitic mode, all the 
elements of the LPDA are connected to the feeder. 
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     Log-periodic dipole array antennas are driven by attaching dipole arms to two 
parallel conductors which represent a transmission line [1]. The transmission line 
feeder is crossed between each dipole thus reversing the direction of fire. The 
LPDA antennas are found to be easy to optimize, while the crossing of the feeder 
between each dipole element leads to a mutual cancellation of backlobe 
components from the individual elements yielding to a very low level of 
backlobe radiation (around 25dB below main lobe gain at HF and 35dB at VHF 
and UHF).  
     To maintain the geometrical pattern of the LPDA to achieve a trully log-
periodic configuration, an infinite configuration would be required. However, the 
practical broadband radiator configuration is truncated at both ends which limits 
the frequency of operation to a given bandwidth. The cutoff frequencies of the 
truncated structure is determined by the electrical lengths of the largest and 
shortest elements of the structure [1, 2]. It is worth mentioning that the use of 
logarithmic antenna arrays is very often related with electronic beam steering. 
An important application of LPDA antennas is in air traffic. Landing is one of 
teh most important issues of every successful flight. Although the majority of 
landings can be conducted solely with visual cues, aircraft must frequently land 
in weather conditions that require electronic assistance to the pilot or to the 
autopilot. 
     Log-periodic dipole antenna is an essential part of localizer antenna arrays. A 
typical localizer antenna system is a part of the electronic systems known as 
Instrumental Landing System (ILS). Localizer shapes a radiation pattern in a way 
to provide lateral guidance to the aircraft beginning its descent, intercepting the 
projected runway center line, and then making a final approach. 
     This work deals with a boundary element modeling of LPDA antennas. The 
formulation in the frequency domain is based on a set of coupled Pocklington 
integro-differential equations for radiation of multiplethin wires above a lossy 
ground. The set of Pocklington equations is solved via the Galerkin-Bubnov 
variant of the indirect Boundary Element Method (GB-IBEM) [4]. Once the 
induced currents along the LPDA are determined the radiation pattern is assessed 
using BEM formalism, as well.  

2 Formulation  

Modeling of multiple wire configurations above a lossy ground is an important 
part in antenna design and electromagnetic compatibility (EMC) studies [2, 5–8]. 
This section firstly deals with an assessment of the current induced along 
multiple wires above a lossy ground at different heights. Once the currents along 
the wire array have been obtained, the equations for related radiated field are 
presented [8]. In this case, the geometry of interest is LPDA shown in Fig 2. The 
length of any other wire is obtained by multiplying the previous length and 
factor τ [2]: 
 

1n

n

L
L

τ +=                                                         (1) 

 © 2008 WIT PressWIT Transactions on Modelling and Simulation, Vol 47,
 www.witpress.com, ISSN 1743-355X (on-line) 

76  Boundary Elements and Other Mesh Reduction Methods XXX



 
 
 
 
 
 
 
 
 
 
 

Figure 1: Wires above a lossy ground at different heights.  

 

Figure 2: LPDA geometry. 

     The current distribution along the multiple wire structure shown in Fig 1 is 
governed by the set of Pocklington integro-differential equations for half-space 
problems given by [8]: 
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where M is the total number of wires and In(x’) is the unknown current 
distribution induced on the n-th wire. Furthermore, g0mn(x,x`) denotes the free 
space Green function:  
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while gimn(x,x`) is, in accordance to the image theory, given by:  
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where k1 is the propagation constant of free space:  
2 2

1 0 0k ω µ ε=                                                  (5) 
and R1mn and R2mn are distances from the source point and from the 
corresponding image, respectively to the observation point of interest. 
     The influence of an imperfectly conducting lower medium is taken into 
account via the Fresnel plane wave reflection coefficient [RC] [5–8]: 
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and εeff  is the complex permittivity of the ground: 

0eff r j σε ε ε
ω

= −                                                 (8) 

     The electric field (normal incidence) at height z above finitely conducting 
half-space can be written, as follows: 

1 ( )
0

Ujk z zincE E e− −=                                              (9) 
where E0 denotes the field amplitude, and zU is the position of the highest 
antenna among M wires in total: 1 2max( , ,... ,... )U Mz z z z z= . 
 
     The earth- reflected field component is given by: 
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     The total field above ground is composed from both incident and reflected 
field component: 

exc inc refE E E= +                                             (11) 
 
 
     The electric field components irradiated by the array are given, as follows [8]: 
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where the corresponding Green function is given by: 

0( , ') ( , ') ( , ')nm nm TM inmG x x g x x R g x x= −                          (15) 

3 Boundary element procedures  

The Galerkin boundary element procedure for the treatment of the system of 
integro-differential equations (1), using linear approximation of the solution, 
starts by applying the standard representation of the unknown current along a 
segment [4, 8]:  
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where I1i and I2i are current values at the local nodes of the i-th boundary 
element, with coordinates x1i and x2i, ∆x= x2i -x1i  denotes a dimension of the 
element. 
     Performing certain mathematical manipulations and the boundary element 
discretisation of the wires results in the following matrix equation [4, 8]: 
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where Ne is the total number of elements along the actual multiple wire 
configuration, and [Z]pk is the interaction matrix representing the mutual 
impedance between each segment on the i-th (source) wire to every segment on 
the j-th (observation) wire [4, 8]: 
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     Vectors {f}and {f’} contain shape functions fn(x) and fn(x’), while {D} and 
{D’} contain their derivatives. The right side vector {V}p represents the voltage 
along the p-th segment and it is given as follows [4, 8]: 

{ } { }04 ( )
p

inc
xp p

l

V j E x f dxπωε= − ∫                            (19) 

     Transmitting mode implies that the vector (19) differs from zero only in the 
feed-gap area of each wire, Fig 2, and the excitation field can be written, as 
follows: 
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where Vg is the feed voltage and ∆lg is the feed-gap width. 
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     Once computing the currents along the wires the radiated field can be 
computed. Applying the BEM formalism to field expressions (12)–(14) it 
follows: 
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where Nj denotes the total number of boundary elements on the j-th wire. 
     The integrals in (21)–(23) are evaluated using Gaussian quadrature. To avoid 
the problem of the Green function quasi-singularity its first derivative is 
approximated by means of a central finite difference approximation [4, 8]. 

4 Computational example 
The computational example is related to the LPDA composed from 12 dipoles 
insulated in free space. The radius of all wires is a=0.004m while the length of  
  

 
Figure 3: Absolute value of current distribution along 12 dipoles versus 

BEM nodes at f=100MHz, f=250MHz and f=300MHz. 
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wires are determined by the length of 1st wire L1=1.5m, and factor τ=0.9. All 
dipoles are fed by the voltage generator Vg=1V with variable phase (each time 
phase is changed for 180°). The operating frequency is varied from 100 MHz to 
300 MHz. Figure 3 shows the absolute value of currents induced along all 12 
dipoles versus BEM nodes at f=100MHz, f=250MHz and f=300MHz. Figs 4 to 6 
show the related field patterns at f=100MHz, f=250MHz and f=300MHz. 
 

 
(XY plane) 

 

 
(YZ plane) 

Figure 4: Radiation pattern at  f=100MHz. 
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(XY plane) 

 

 
(YZ plane) 

Figure 5: Radiation pattern at  f=250MHz. 

5 Concluding remarks 

The frequency domain analysis of the log-periodic dipole array (LPDA) with 
boundary elements is undertaken in this work. The formulation is based on the  
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set of coupled integro-differential equations of the Pocklington type. The 
induced currents along the elements of the array are obtained as the BEM 
solution of the Pocklington equations. Once obtaining the current distribution 
along the elements of LPDA the related far field patterns are computed.  
 

 
(XY plane) 

 

 
(YZ plane) 

Figure 6: Radiation pattern at  f=300MHz. (YZ plane). 
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